|
47 | 47 |
|
48 | 48 |
|
49 | 49 | def _handle_sigma_noise_parameters(sigma, noise): |
50 | | - """Helper function for transition of 'noise' parameter to be named 'sigma'.""" |
| 50 | + """Help transition of 'noise' parameter to be named 'sigma'.""" |
51 | 51 | if (sigma is None and noise is None) or (sigma is not None and noise is not None): |
52 | 52 | raise ValueError("'sigma' argument must be specified.") |
53 | 53 |
|
@@ -177,7 +177,7 @@ def _build_prior( |
177 | 177 |
|
178 | 178 | def prior(self, name, X, n_outputs=1, reparameterize=True, jitter=JITTER_DEFAULT, **kwargs): |
179 | 179 | R""" |
180 | | - Returns the GP prior distribution evaluated over the input |
| 180 | + Return the GP prior distribution evaluated over the input |
181 | 181 | locations `X`. |
182 | 182 |
|
183 | 183 | This is the prior probability over the space |
@@ -250,7 +250,7 @@ def _build_conditional(self, Xnew, X, f, cov_total, mean_total, jitter): |
250 | 250 |
|
251 | 251 | def conditional(self, name, Xnew, given=None, jitter=JITTER_DEFAULT, **kwargs): |
252 | 252 | R""" |
253 | | - Returns the conditional distribution evaluated over new input |
| 253 | + Return the conditional distribution evaluated over new input |
254 | 254 | locations `Xnew`. |
255 | 255 |
|
256 | 256 | Given a set of function values `f` that |
@@ -350,7 +350,7 @@ def _build_prior(self, name, X, reparameterize=True, jitter=JITTER_DEFAULT, **kw |
350 | 350 |
|
351 | 351 | def prior(self, name, X, reparameterize=True, jitter=JITTER_DEFAULT, **kwargs): |
352 | 352 | R""" |
353 | | - Returns the TP prior distribution evaluated over the input |
| 353 | + Return the TP prior distribution evaluated over the input |
354 | 354 | locations `X`. |
355 | 355 |
|
356 | 356 | This is the prior probability over the space |
@@ -394,7 +394,7 @@ def _build_conditional(self, Xnew, X, f, jitter): |
394 | 394 |
|
395 | 395 | def conditional(self, name, Xnew, jitter=JITTER_DEFAULT, **kwargs): |
396 | 396 | R""" |
397 | | - Returns the conditional distribution evaluated over new input |
| 397 | + Return the conditional distribution evaluated over new input |
398 | 398 | locations `Xnew`. |
399 | 399 |
|
400 | 400 | Given a set of function values `f` that |
@@ -487,7 +487,7 @@ def marginal_likelihood( |
487 | 487 | **kwargs, |
488 | 488 | ): |
489 | 489 | R""" |
490 | | - Returns the marginal likelihood distribution, given the input |
| 490 | + Return the marginal likelihood distribution, given the input |
491 | 491 | locations `X` and the data `y`. |
492 | 492 |
|
493 | 493 | This is the integral over the product of the GP prior and a normal likelihood. |
@@ -594,7 +594,7 @@ def conditional( |
594 | 594 | self, name, Xnew, pred_noise=False, given=None, jitter=JITTER_DEFAULT, **kwargs |
595 | 595 | ): |
596 | 596 | R""" |
597 | | - Returns the conditional distribution evaluated over new input |
| 597 | + Return the conditional distribution evaluated over new input |
598 | 598 | locations `Xnew`. |
599 | 599 |
|
600 | 600 | Given a set of function values `f` that the GP prior was over, the |
@@ -814,7 +814,7 @@ def marginal_likelihood( |
814 | 814 | self, name, X, Xu, y, sigma=None, noise=None, jitter=JITTER_DEFAULT, **kwargs |
815 | 815 | ): |
816 | 816 | R""" |
817 | | - Returns the approximate marginal likelihood distribution, given the input |
| 817 | + Return the approximate marginal likelihood distribution, given the input |
818 | 818 | locations `X`, inducing point locations `Xu`, data `y`, and white noise |
819 | 819 | standard deviations `sigma`. |
820 | 820 |
|
@@ -906,7 +906,7 @@ def conditional( |
906 | 906 | self, name, Xnew, pred_noise=False, given=None, jitter=JITTER_DEFAULT, **kwargs |
907 | 907 | ): |
908 | 908 | R""" |
909 | | - Returns the approximate conditional distribution of the GP evaluated over |
| 909 | + Return the approximate conditional distribution of the GP evaluated over |
910 | 910 | new input locations `Xnew`. |
911 | 911 |
|
912 | 912 | Parameters |
@@ -1019,7 +1019,7 @@ def _build_prior(self, name, Xs, jitter, **kwargs): |
1019 | 1019 |
|
1020 | 1020 | def prior(self, name, Xs, jitter=JITTER_DEFAULT, **kwargs): |
1021 | 1021 | """ |
1022 | | - Returns the prior distribution evaluated over the input |
| 1022 | + Return the prior distribution evaluated over the input |
1023 | 1023 | locations `Xs`. |
1024 | 1024 |
|
1025 | 1025 | Parameters |
@@ -1065,7 +1065,7 @@ def _build_conditional(self, Xnew, jitter): |
1065 | 1065 |
|
1066 | 1066 | def conditional(self, name, Xnew, jitter=JITTER_DEFAULT, **kwargs): |
1067 | 1067 | """ |
1068 | | - Returns the conditional distribution evaluated over new input |
| 1068 | + Return the conditional distribution evaluated over new input |
1069 | 1069 | locations `Xnew`. |
1070 | 1070 |
|
1071 | 1071 | `Xnew` will be split by columns and fed to the relevant |
@@ -1188,7 +1188,7 @@ def _check_inputs(self, Xs, y): |
1188 | 1188 |
|
1189 | 1189 | def marginal_likelihood(self, name, Xs, y, sigma, is_observed=True, **kwargs): |
1190 | 1190 | """ |
1191 | | - Returns the marginal likelihood distribution, given the input |
| 1191 | + Return the marginal likelihood distribution, given the input |
1192 | 1192 | locations `cartesian(*Xs)` and the data `y`. |
1193 | 1193 |
|
1194 | 1194 | Parameters |
@@ -1267,7 +1267,7 @@ def _build_conditional(self, Xnew, diag, pred_noise): |
1267 | 1267 |
|
1268 | 1268 | def conditional(self, name, Xnew, pred_noise=False, diag=False, **kwargs): |
1269 | 1269 | """ |
1270 | | - Returns the conditional distribution evaluated over new input |
| 1270 | + Return the conditional distribution evaluated over new input |
1271 | 1271 | locations `Xnew`, just as in `Marginal`. |
1272 | 1272 |
|
1273 | 1273 | `Xnew` will be split by columns and fed to the relevant |
|
0 commit comments