99# third party
1010from optuna .trial import Trial
1111import pandas as pd
12- from pydantic import validate_arguments
1312
1413# hyperimpute absolute
1514import hyperimpute .logger as log
@@ -112,15 +111,12 @@ def subtype() -> str:
112111 def fqdn (cls ) -> str :
113112 return cls .type () + "." + cls .subtype () + "." + cls .name ()
114113
115- @validate_arguments (config = dict (arbitrary_types_allowed = True ))
116114 def fit_transform (self , X : pd .DataFrame , * args : Any , ** kwargs : Any ) -> pd .DataFrame :
117115 return pd .DataFrame (self .fit (X , * args , * kwargs ).transform (X ))
118116
119- @validate_arguments (config = dict (arbitrary_types_allowed = True ))
120117 def fit_predict (self , X : pd .DataFrame , * args : Any , ** kwargs : Any ) -> pd .DataFrame :
121118 return pd .DataFrame (self .fit (X , * args , * kwargs ).predict (X ))
122119
123- @validate_arguments (config = dict (arbitrary_types_allowed = True ))
124120 def fit (self , X : pd .DataFrame , * args : Any , ** kwargs : Any ) -> Any :
125121 X = cast .to_dataframe (X )
126122 return self ._fit (X , * args , ** kwargs )
@@ -129,7 +125,6 @@ def fit(self, X: pd.DataFrame, *args: Any, **kwargs: Any) -> Any:
129125 def _fit (self , X : pd .DataFrame , * args : Any , ** kwargs : Any ) -> "Plugin" :
130126 ...
131127
132- @validate_arguments (config = dict (arbitrary_types_allowed = True ))
133128 def transform (self , X : pd .DataFrame ) -> pd .DataFrame :
134129 X = cast .to_dataframe (X )
135130 return pd .DataFrame (self ._transform (X ))
@@ -138,7 +133,6 @@ def transform(self, X: pd.DataFrame) -> pd.DataFrame:
138133 def _transform (self , X : pd .DataFrame ) -> pd .DataFrame :
139134 ...
140135
141- @validate_arguments (config = dict (arbitrary_types_allowed = True ))
142136 def predict (self , X : pd .DataFrame , * args : Any , ** kwargs : Any ) -> pd .DataFrame :
143137 X = cast .to_dataframe (X )
144138 return pd .DataFrame (self ._predict (X , * args , * kwargs ))
0 commit comments