|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "2ec63918-562a-4e7f-8098-a9c83b6d81d6", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [ |
| 9 | + { |
| 10 | + "name": "stderr", |
| 11 | + "output_type": "stream", |
| 12 | + "text": [ |
| 13 | + "/home/eemerson/venvs/deepcell-spots/lib/python3.10/site-packages/keras/optimizer_v2/gradient_descent.py:102: UserWarning: The `lr` argument is deprecated, use `learning_rate` instead.\n", |
| 14 | + " super(SGD, self).__init__(name, **kwargs)\n" |
| 15 | + ] |
| 16 | + } |
| 17 | + ], |
| 18 | + "source": [ |
| 19 | + "import pandas as pd\n", |
| 20 | + "import numpy as np\n", |
| 21 | + "import tifffile as tiff\n", |
| 22 | + "from deepcell_spots.applications import Polaris\n", |
| 23 | + "from pathlib import Path\n", |
| 24 | + "import tensorflow as tf\n", |
| 25 | + "import os\n", |
| 26 | + "\n", |
| 27 | + "\n", |
| 28 | + "SG_MPP_60X = 0.10727\n", |
| 29 | + "\n", |
| 30 | + "data_dir = Path('/mnt/deepcell_data/users/ellen/macrophages/signaling')" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 2, |
| 36 | + "id": "ee5a3782-2308-4070-a769-0127ece89a46", |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [], |
| 39 | + "source": [ |
| 40 | + "# tensorflow/GPU setup\n", |
| 41 | + "device_indices = '1'\n", |
| 42 | + "os.environ[\"CUDA_VISIBLE_DEVICES\"]=\"{}\".format(device_indices)\n", |
| 43 | + "\n", |
| 44 | + "physical_devices = tf.config.experimental.list_physical_devices('GPU')\n", |
| 45 | + "assert len(physical_devices) >= 1 , \"GPU Configuration failed\"\n", |
| 46 | + "\n", |
| 47 | + "# IMPORTANT: without this config, the GPU will run out of memory trying to run Polaris\n", |
| 48 | + "for device in physical_devices:\n", |
| 49 | + " tf.config.experimental.set_memory_growth(device, True)" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "code", |
| 54 | + "execution_count": 3, |
| 55 | + "id": "8698200a-31f1-4afe-a877-dc76b67cc321", |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [ |
| 58 | + { |
| 59 | + "name": "stderr", |
| 60 | + "output_type": "stream", |
| 61 | + "text": [ |
| 62 | + "2025-09-08 14:59:00.876518: I tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n", |
| 63 | + "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |
| 64 | + "2025-09-08 14:59:01.401743: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 29909 MB memory: -> device: 0, name: NVIDIA RTX A6000, pci bus id: 0000:23:00.0, compute capability: 8.6\n" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "name": "stdout", |
| 69 | + "output_type": "stream", |
| 70 | + "text": [ |
| 71 | + "WARNING:tensorflow:No training configuration found in save file, so the model was *not* compiled. Compile it manually.\n" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "name": "stderr", |
| 76 | + "output_type": "stream", |
| 77 | + "text": [ |
| 78 | + "INFO:root:Checking for cached data\n", |
| 79 | + "INFO:root:Checking SpotDetection-8.tar.gz against provided file_hash...\n", |
| 80 | + "INFO:root:SpotDetection-8.tar.gz with hash a6164e48ef8872a9524b4ec6726859d7 already available.\n", |
| 81 | + "INFO:root:Extracting /home/eemerson/.deepcell/models/SpotDetection-8.tar.gz\n", |
| 82 | + "INFO:root:Successfully extracted /home/eemerson/.deepcell/models/SpotDetection-8.tar.gz into /home/eemerson/.deepcell/models\n" |
| 83 | + ] |
| 84 | + } |
| 85 | + ], |
| 86 | + "source": [ |
| 87 | + "c0_codebook = pd.read_csv(data_dir / 'spatial_genomics_barcodes/extended_panel/df_barcodes_c0.csv', index_col=0)\n", |
| 88 | + "\n", |
| 89 | + "rounds = 20 # number of hybridizations\n", |
| 90 | + "\n", |
| 91 | + "# run this once to ensure model is downloaded\n", |
| 92 | + "# nuc_app = NuclearSegmentation.from_version('1.1')\n", |
| 93 | + "\n", |
| 94 | + "# but then we want the model itself\n", |
| 95 | + "model_dir = Path.home() / \".deepcell\" / \"models\"\n", |
| 96 | + "model_path = model_dir / 'NuclearSegmentation'\n", |
| 97 | + "nuc_model = tf.keras.models.load_model(model_path)\n", |
| 98 | + "\n", |
| 99 | + "polaris_app_c0 = Polaris(image_type='multiplex',\n", |
| 100 | + " segmentation_type='nucleus',\n", |
| 101 | + " segmentation_model=nuc_model,\n", |
| 102 | + " decoding_kwargs={'rounds': rounds,\n", |
| 103 | + " 'channels': 1,\n", |
| 104 | + " 'df_barcodes': c0_codebook})" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "code", |
| 109 | + "execution_count": 4, |
| 110 | + "id": "dd1977ca-bb0a-41cb-99ee-c6a069fb168f", |
| 111 | + "metadata": {}, |
| 112 | + "outputs": [ |
| 113 | + { |
| 114 | + "data": { |
| 115 | + "text/plain": [ |
| 116 | + "(4, 8400, 8400, 20)" |
| 117 | + ] |
| 118 | + }, |
| 119 | + "execution_count": 4, |
| 120 | + "metadata": {}, |
| 121 | + "output_type": "execute_result" |
| 122 | + } |
| 123 | + ], |
| 124 | + "source": [ |
| 125 | + "img = tiff.imread(data_dir / '20250820-EE_prim_mac_JNK-p65_LPS_paired/100_ng_mL/spatial_genomics/full_scale/cropped_regions/fov_0.tiff')\n", |
| 126 | + "img = img.astype('float32')\n", |
| 127 | + "img.shape" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 5, |
| 133 | + "id": "bfac0f09-90a2-44ac-b246-53c53e6d497d", |
| 134 | + "metadata": {}, |
| 135 | + "outputs": [ |
| 136 | + { |
| 137 | + "name": "stdout", |
| 138 | + "output_type": "stream", |
| 139 | + "text": [ |
| 140 | + "(1, 8400, 8400, 20)\n", |
| 141 | + "(1, 8400, 8400, 1)\n" |
| 142 | + ] |
| 143 | + } |
| 144 | + ], |
| 145 | + "source": [ |
| 146 | + "single_channel_image = np.expand_dims(img[0], axis=0)\n", |
| 147 | + "nuc_img = np.expand_dims(np.expand_dims(img[-1,...,0], axis=-1), axis=0)\n", |
| 148 | + "\n", |
| 149 | + "print(single_channel_image.shape)\n", |
| 150 | + "print(nuc_img.shape)" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "code", |
| 155 | + "execution_count": 6, |
| 156 | + "id": "521ce244-98d4-4d44-b4ae-151174e9584a", |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [ |
| 159 | + { |
| 160 | + "name": "stdout", |
| 161 | + "output_type": "stream", |
| 162 | + "text": [ |
| 163 | + "Validating inputs.\n", |
| 164 | + "Predicting spot locations.\n" |
| 165 | + ] |
| 166 | + }, |
| 167 | + { |
| 168 | + "name": "stderr", |
| 169 | + "output_type": "stream", |
| 170 | + "text": [ |
| 171 | + " 0%| | 0/20 [00:00<?, ?it/s]2025-09-08 15:04:03.907666: I tensorflow/stream_executor/cuda/cuda_dnn.cc:368] Loaded cuDNN version 8204\n", |
| 172 | + "2025-09-08 15:04:06.134474: I tensorflow/stream_executor/cuda/cuda_blas.cc:1786] TensorFloat-32 will be used for the matrix multiplication. This will only be logged once.\n", |
| 173 | + "100%|███████████████████████████████████████████████████████████████████| 20/20 [50:06<00:00, 150.33s/it]\n" |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "name": "stdout", |
| 178 | + "output_type": "stream", |
| 179 | + "text": [ |
| 180 | + "Segmenting cells.\n", |
| 181 | + "Decoding gene identities.\n" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "name": "stderr", |
| 186 | + "output_type": "stream", |
| 187 | + "text": [ |
| 188 | + "/home/eemerson/venvs/deepcell-spots/lib/python3.10/site-packages/torch/__init__.py:749: UserWarning: torch.set_default_tensor_type() is deprecated as of PyTorch 2.1, please use torch.set_default_dtype() and torch.set_default_device() as alternatives. (Triggered internally at ../torch/csrc/tensor/python_tensor.cpp:431.)\n", |
| 189 | + " _C._set_default_tensor_type(t)\n" |
| 190 | + ] |
| 191 | + }, |
| 192 | + { |
| 193 | + "name": "stdout", |
| 194 | + "output_type": "stream", |
| 195 | + "text": [ |
| 196 | + "Training...\n" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "name": "stderr", |
| 201 | + "output_type": "stream", |
| 202 | + "text": [ |
| 203 | + "100%|██████████████████████████████████████████████████████████████████| 500/500 [02:41<00:00, 3.09it/s]\n" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "name": "stdout", |
| 208 | + "output_type": "stream", |
| 209 | + "text": [ |
| 210 | + "Estimating barcode probabilities...\n", |
| 211 | + "Refining spot locations.\n", |
| 212 | + "Refining spot locations.\n" |
| 213 | + ] |
| 214 | + } |
| 215 | + ], |
| 216 | + "source": [ |
| 217 | + "old_results, new_results, seg = polaris_app_c0.predict(single_channel_image,\n", |
| 218 | + " segmentation_image=nuc_img,\n", |
| 219 | + " image_mpp=SG_MPP_60X,\n", |
| 220 | + " decoding_training_kwargs={'rescue_errors': False,\n", |
| 221 | + " 'rescue_mixed': False,\n", |
| 222 | + " 'pred_prob_thresh': 0.95})" |
| 223 | + ] |
| 224 | + }, |
| 225 | + { |
| 226 | + "cell_type": "code", |
| 227 | + "execution_count": 7, |
| 228 | + "id": "cc9b13be-bd1b-4084-9413-688acfea4953", |
| 229 | + "metadata": {}, |
| 230 | + "outputs": [], |
| 231 | + "source": [ |
| 232 | + "def compare_dfs(df1, df2, verbose=True):\n", |
| 233 | + " identical = True\n", |
| 234 | + "\n", |
| 235 | + " # 1. Shape\n", |
| 236 | + " if df1.shape != df2.shape:\n", |
| 237 | + " if verbose:\n", |
| 238 | + " print(f\"Shape differs: {df1.shape} vs {df2.shape}\")\n", |
| 239 | + " identical = False\n", |
| 240 | + "\n", |
| 241 | + " # 2. Columns\n", |
| 242 | + " if not df1.columns.equals(df2.columns):\n", |
| 243 | + " if verbose:\n", |
| 244 | + " print(f\"Columns differ:\")\n", |
| 245 | + " print(\"Only in df1:\", df1.columns.difference(df2.columns).tolist())\n", |
| 246 | + " print(\"Only in df2:\", df2.columns.difference(df1.columns).tolist())\n", |
| 247 | + " identical = False\n", |
| 248 | + "\n", |
| 249 | + " # 3. Index\n", |
| 250 | + " if not df1.index.equals(df2.index):\n", |
| 251 | + " if verbose:\n", |
| 252 | + " print(\"Index differs\")\n", |
| 253 | + " identical = False\n", |
| 254 | + "\n", |
| 255 | + " # 4. Dtypes\n", |
| 256 | + " if not (df1.dtypes == df2.dtypes).all():\n", |
| 257 | + " if verbose:\n", |
| 258 | + " print(\"Dtypes differ:\")\n", |
| 259 | + " print(\"df1 dtypes:\\n\", df1.dtypes)\n", |
| 260 | + " print(\"df2 dtypes:\\n\", df2.dtypes)\n", |
| 261 | + " identical = False\n", |
| 262 | + "\n", |
| 263 | + " # 5. Values (per column)\n", |
| 264 | + " for col in df1.columns:\n", |
| 265 | + " s1 = df1[col]\n", |
| 266 | + " s2 = df2[col]\n", |
| 267 | + "\n", |
| 268 | + " # Align indices to avoid ValueError\n", |
| 269 | + " s1_aligned, s2_aligned = s1.align(s2)\n", |
| 270 | + "\n", |
| 271 | + " if pd.api.types.is_numeric_dtype(s1):\n", |
| 272 | + " mask_diff = ~((s1_aligned.fillna(np.nan) == s2_aligned.fillna(np.nan)))\n", |
| 273 | + " else:\n", |
| 274 | + " mask_diff = ~((s1_aligned == s2_aligned) | (s1_aligned.isna() & s2_aligned.isna()))\n", |
| 275 | + "\n", |
| 276 | + " if mask_diff.any():\n", |
| 277 | + " if verbose:\n", |
| 278 | + " print(f\"Differences found in column '{col}':\")\n", |
| 279 | + " for idx in s1_aligned.index[mask_diff]:\n", |
| 280 | + " print(f\" Row {idx}: {s1_aligned.loc[idx]} != {s2_aligned.loc[idx]}\")\n", |
| 281 | + " identical = False\n", |
| 282 | + "\n", |
| 283 | + " if identical and verbose:\n", |
| 284 | + " print(\"DataFrames are identical!\")\n", |
| 285 | + "\n", |
| 286 | + " return identical" |
| 287 | + ] |
| 288 | + }, |
| 289 | + { |
| 290 | + "cell_type": "code", |
| 291 | + "execution_count": 8, |
| 292 | + "id": "1c10a7fd-e039-491e-b160-f887a219db76", |
| 293 | + "metadata": { |
| 294 | + "scrolled": true |
| 295 | + }, |
| 296 | + "outputs": [ |
| 297 | + { |
| 298 | + "name": "stdout", |
| 299 | + "output_type": "stream", |
| 300 | + "text": [ |
| 301 | + "DataFrames are identical!\n" |
| 302 | + ] |
| 303 | + }, |
| 304 | + { |
| 305 | + "data": { |
| 306 | + "text/plain": [ |
| 307 | + "True" |
| 308 | + ] |
| 309 | + }, |
| 310 | + "execution_count": 8, |
| 311 | + "metadata": {}, |
| 312 | + "output_type": "execute_result" |
| 313 | + } |
| 314 | + ], |
| 315 | + "source": [ |
| 316 | + "compare_dfs(old_results, new_results)" |
| 317 | + ] |
| 318 | + }, |
| 319 | + { |
| 320 | + "cell_type": "code", |
| 321 | + "execution_count": null, |
| 322 | + "id": "c4210d68-aad7-41dd-9a61-2fc688000c3e", |
| 323 | + "metadata": {}, |
| 324 | + "outputs": [], |
| 325 | + "source": [] |
| 326 | + } |
| 327 | + ], |
| 328 | + "metadata": { |
| 329 | + "kernelspec": { |
| 330 | + "display_name": "Python 3 (ipykernel)", |
| 331 | + "language": "python", |
| 332 | + "name": "python3" |
| 333 | + }, |
| 334 | + "language_info": { |
| 335 | + "codemirror_mode": { |
| 336 | + "name": "ipython", |
| 337 | + "version": 3 |
| 338 | + }, |
| 339 | + "file_extension": ".py", |
| 340 | + "mimetype": "text/x-python", |
| 341 | + "name": "python", |
| 342 | + "nbconvert_exporter": "python", |
| 343 | + "pygments_lexer": "ipython3", |
| 344 | + "version": "3.10.12" |
| 345 | + } |
| 346 | + }, |
| 347 | + "nbformat": 4, |
| 348 | + "nbformat_minor": 5 |
| 349 | +} |
0 commit comments