1
+ # -*- coding: utf-8 -*-
1
2
# sage_setup: distribution = sagemath-categories
2
3
# sage.doctest: needs sage.rings.finite_rings
3
4
r"""
@@ -123,7 +124,7 @@ class DrinfeldModules(Category_over_base_ring):
123
124
True
124
125
125
126
sage: C.ore_polring()
126
- Ore Polynomial Ring in t over Finite Field in z of size 11^4 twisted by z |--> z^11
127
+ Ore Polynomial Ring in τ over Finite Field in z of size 11^4 twisted by z |--> z^11
127
128
sage: C.ore_polring() is phi.ore_polring()
128
129
True
129
130
@@ -135,7 +136,7 @@ class DrinfeldModules(Category_over_base_ring):
135
136
136
137
sage: psi = C.object([p_root, 1])
137
138
sage: psi
138
- Drinfeld module defined by T |--> t + z^3 + 7*z^2 + 6*z + 10
139
+ Drinfeld module defined by T |--> τ + z^3 + 7*z^2 + 6*z + 10
139
140
sage: psi.category() is C
140
141
True
141
142
@@ -207,7 +208,7 @@ class DrinfeldModules(Category_over_base_ring):
207
208
TypeError: function ring base must be a finite field
208
209
"""
209
210
210
- def __init__ (self , base_morphism , name = 't ' ):
211
+ def __init__ (self , base_morphism , name = 'τ ' ):
211
212
r"""
212
213
Initialize ``self``.
213
214
@@ -216,7 +217,7 @@ def __init__(self, base_morphism, name='t'):
216
217
- ``base_field`` -- the base field, which is a ring extension
217
218
over a base
218
219
219
- - ``name`` -- (default: ``'t '``) the name of the Ore polynomial
220
+ - ``name`` -- (default: ``'τ '``) the name of the Ore polynomial
220
221
variable
221
222
222
223
TESTS::
@@ -227,7 +228,7 @@ def __init__(self, base_morphism, name='t'):
227
228
sage: p_root = z^3 + 7*z^2 + 6*z + 10
228
229
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
229
230
sage: C = phi.category()
230
- sage: ore_polring.<t > = OrePolynomialRing(K, K.frobenius_endomorphism())
231
+ sage: ore_polring.<τ > = OrePolynomialRing(K, K.frobenius_endomorphism())
231
232
sage: C._ore_polring is ore_polring
232
233
True
233
234
sage: C._function_ring is A
@@ -507,7 +508,7 @@ def object(self, gen):
507
508
508
509
sage: phi = C.object([p_root, 0, 1])
509
510
sage: phi
510
- Drinfeld module defined by T |--> t ^2 + z^3 + 7*z^2 + 6*z + 10
511
+ Drinfeld module defined by T |--> τ ^2 + z^3 + 7*z^2 + 6*z + 10
511
512
sage: t = phi.ore_polring().gen()
512
513
sage: C.object(t^2 + z^3 + 7*z^2 + 6*z + 10) is phi
513
514
True
@@ -534,7 +535,7 @@ def ore_polring(self):
534
535
sage: phi = DrinfeldModule(A, [p_root, 0, 0, 1])
535
536
sage: C = phi.category()
536
537
sage: C.ore_polring()
537
- Ore Polynomial Ring in t over Finite Field in z of size 11^4 twisted by z |--> z^11
538
+ Ore Polynomial Ring in τ over Finite Field in z of size 11^4 twisted by z |--> z^11
538
539
"""
539
540
return self ._ore_polring
540
541
@@ -770,7 +771,7 @@ def constant_coefficient(self):
770
771
sage: t = phi.ore_polring().gen()
771
772
sage: psi = C.object(phi.constant_coefficient() + t^3)
772
773
sage: psi
773
- Drinfeld module defined by T |--> t ^3 + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
774
+ Drinfeld module defined by T |--> τ ^3 + 2*z12^11 + 2*z12^10 + z12^9 + 3*z12^8 + z12^7 + 2*z12^5 + 2*z12^4 + 3*z12^3 + z12^2 + 2*z12
774
775
775
776
Reciprocally, it is impossible to create two Drinfeld modules in
776
777
this category if they do not share the same constant
@@ -796,7 +797,7 @@ def ore_polring(self):
796
797
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
797
798
sage: S = phi.ore_polring()
798
799
sage: S
799
- Ore Polynomial Ring in t over Finite Field in z12 of size 5^12 twisted by z12 |--> z12^(5^2)
800
+ Ore Polynomial Ring in τ over Finite Field in z12 of size 5^12 twisted by z12 |--> z12^(5^2)
800
801
801
802
The Ore polynomial ring can also be retrieved from the category
802
803
of the Drinfeld module::
@@ -825,8 +826,8 @@ def ore_variable(self):
825
826
sage: phi = DrinfeldModule(A, [p_root, z12^3, z12^5])
826
827
827
828
sage: phi.ore_polring()
828
- Ore Polynomial Ring in t over Finite Field in z12 of size 5^12 twisted by z12 |--> z12^(5^2)
829
+ Ore Polynomial Ring in τ over Finite Field in z12 of size 5^12 twisted by z12 |--> z12^(5^2)
829
830
sage: phi.ore_variable()
830
- t
831
+ τ
831
832
"""
832
833
return self .category ().ore_polring ().gen ()
0 commit comments