Skip to content

Commit 02a7986

Browse files
committed
Adding more documentation.
1 parent de91281 commit 02a7986

File tree

1 file changed

+28
-5
lines changed

1 file changed

+28
-5
lines changed

src/sage/groups/artin.py

Lines changed: 28 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -164,14 +164,36 @@ def coxeter_group_element(self, W=None):
164164
In = W.index_set()
165165
return W.prod(s[In[abs(i)-1]] for i in self.Tietze())
166166

167-
def burau_matrix(self, var='t', reduced=False):
167+
def burau_matrix(self, var='t'):
168168
r"""
169169
Return the Burau matrix of the Artin group element.
170170
171-
Following [BQ2024]_, the (generalized) Burau representation of an
172-
Artin group is defined by deforming the reflection representation
173-
of the corresponding Coxeter group. However, we substitute
174-
`q \mapsto -t` from [BQ2024]_ to match the unitary
171+
Following [BQ2024]_, the (generalized) Burau representation
172+
of an Artin group is defined by deforming the reflection
173+
representation of the corresponding Coxeter group. However,
174+
we substitute `q \mapsto -t` from [BQ2024]_ to match one of
175+
the unitary (reduced) Burau representations of the braid group
176+
(see :meth:`sage.groups.braid.Braid.burau_matrix()` for details.)
177+
178+
More precisely, let `(m_{ij})_{i,j \in I}` be the
179+
:meth:`Coxeter matrix<coxeter_matrix>`. Then the action is
180+
given on the basis `(\alpha_1, \ldots \alpha_n)` (corresponding
181+
to the reflection representation of the corresponding
182+
:meth:`Coxeter group<coxeter_group>`) by
183+
184+
.. MATH::
185+
186+
\sigma_i(\alpha_j) = \alpha_j
187+
- \langle \alpha_i, \alpha_j \rangle_q \alpha_i,
188+
\qquad \text{ where }
189+
\langle \alpha_i, \alpha_j \rangle_q := \begin{cases}
190+
1 + t^2 & \text{if } i = j, \\
191+
-2 t \cos(\pi/m_{ij}) & \text{if } i \neq j.
192+
\end{cases}.
193+
194+
By convention `\cos(\pi/\infty) = 1`. Note that the inverse of the
195+
generators act by `\sigma_i^{-1}(\alpha_j) = \alpha_j - q^{-2}
196+
\langle \alpha_j, \alpha_i \rangle_q \alpha_i`.
175197
176198
INPUT:
177199
@@ -286,6 +308,7 @@ def burau_matrix(self, var='t', reduced=False):
286308

287309
if var == 't':
288310
return ret
311+
289312
from sage.rings.polynomial.laurent_polynomial_ring import LaurentPolynomialRing
290313
poly_ring = LaurentPolynomialRing(ret.base_ring().base_ring(), var)
291314
return ret.change_ring(poly_ring)

0 commit comments

Comments
 (0)