@@ -164,14 +164,36 @@ def coxeter_group_element(self, W=None):
164164 In = W .index_set ()
165165 return W .prod (s [In [abs (i )- 1 ]] for i in self .Tietze ())
166166
167- def burau_matrix (self , var = 't' , reduced = False ):
167+ def burau_matrix (self , var = 't' ):
168168 r"""
169169 Return the Burau matrix of the Artin group element.
170170
171- Following [BQ2024]_, the (generalized) Burau representation of an
172- Artin group is defined by deforming the reflection representation
173- of the corresponding Coxeter group. However, we substitute
174- `q \mapsto -t` from [BQ2024]_ to match the unitary
171+ Following [BQ2024]_, the (generalized) Burau representation
172+ of an Artin group is defined by deforming the reflection
173+ representation of the corresponding Coxeter group. However,
174+ we substitute `q \mapsto -t` from [BQ2024]_ to match one of
175+ the unitary (reduced) Burau representations of the braid group
176+ (see :meth:`sage.groups.braid.Braid.burau_matrix()` for details.)
177+
178+ More precisely, let `(m_{ij})_{i,j \in I}` be the
179+ :meth:`Coxeter matrix<coxeter_matrix>`. Then the action is
180+ given on the basis `(\alpha_1, \ldots \alpha_n)` (corresponding
181+ to the reflection representation of the corresponding
182+ :meth:`Coxeter group<coxeter_group>`) by
183+
184+ .. MATH::
185+
186+ \sigma_i(\alpha_j) = \alpha_j
187+ - \langle \alpha_i, \alpha_j \rangle_q \alpha_i,
188+ \qquad \text{ where }
189+ \langle \alpha_i, \alpha_j \rangle_q := \begin{cases}
190+ 1 + t^2 & \text{if } i = j, \\
191+ -2 t \cos(\pi/m_{ij}) & \text{if } i \neq j.
192+ \end{cases}.
193+
194+ By convention `\cos(\pi/\infty) = 1`. Note that the inverse of the
195+ generators act by `\sigma_i^{-1}(\alpha_j) = \alpha_j - q^{-2}
196+ \langle \alpha_j, \alpha_i \rangle_q \alpha_i`.
175197
176198 INPUT:
177199
@@ -286,6 +308,7 @@ def burau_matrix(self, var='t', reduced=False):
286308
287309 if var == 't' :
288310 return ret
311+
289312 from sage .rings .polynomial .laurent_polynomial_ring import LaurentPolynomialRing
290313 poly_ring = LaurentPolynomialRing (ret .base_ring ().base_ring (), var )
291314 return ret .change_ring (poly_ring )
0 commit comments