@@ -245,12 +245,14 @@ def lefschetz_element(self):
245245 ....: basis_deg[deg].append(b)
246246 ....:
247247 sage: basis_deg
248- {0: [1], 1: [A02, A12, A01, A012, A03, A13, A013, A23, A023,
249- A123, A04, A14, A014, A24, A024, A124, A34, A034, A134, A234,
250- A01234], 2: [A02*A01234, A12*A01234, A01*A01234, A012^2,
251- A03*A01234, A13*A01234, A013^2, A23*A01234, A023^2, A123^2,
252- A04*A01234, A14*A01234, A014^2, A24*A01234, A024^2, A124^2,
253- A34*A01234, A034^2, A134^2, A234^2, A01234^2], 3: [A01234^3]}
248+ {0: [1],
249+ 1: [A01, A12, A02, A012, A23, A13, A123, A03, A013, A023, A34, A24,
250+ A234, A14, A124, A134, A04, A014, A024, A034, A01234],
251+ 2: [A01*A01234, A12*A01234, A02*A01234, A012^2, A23*A01234,
252+ A13*A01234, A123^2, A03*A01234, A013^2, A023^2, A34*A01234,
253+ A24*A01234, A234^2, A14*A01234, A124^2, A134^2, A04*A01234,
254+ A014^2, A024^2, A034^2, A01234^2],
255+ 3: [A01234^3]}
254256 sage: g_eq_maps = {}
255257 sage: lefschetz_el = ch.lefschetz_element(); lefschetz_el
256258 -2*A01 - 2*A02 - 2*A03 - 2*A04 - 2*A12 - 2*A13 - 2*A14 - 2*A23
@@ -262,37 +264,38 @@ def lefschetz_element(self):
262264 ....: g_eq_maps[deg].extend([i*lefschetz_el for i in basis_deg[deg]])
263265 ....:
264266 sage: g_eq_maps
265- {0: [-2*A01 - 2*A02 - 2*A03 - 2*A04 - 2*A12 - 2*A13 - 2*A14
266- - 2*A23 - 2*A24 - 2*A34 - 6*A012 - 6*A013 - 6*A014 - 6*A023
267- - 6*A024 - 6*A034 - 6*A123 - 6*A124 - 6*A134 - 6*A234
268- - 20*A01234], 1: [2*A012^2 + 2*A023^2 + 2*A024^2
269- - 10*A02*A01234 + 2*A01234^2, 2*A012^2 + 2*A123^2 + 2*A124^2
270- - 10*A12*A01234 + 2*A01234^2, 2*A012^2 + 2*A013^2 + 2*A014^2
271- - 10*A01*A01234 + 2*A01234^2, -6*A012^2 + 2*A01*A01234
272- + 2*A02*A01234 + 2*A12*A01234, 2*A013^2 + 2*A023^2 + 2*A034^2
273- - 10*A03*A01234 + 2*A01234^2, 2*A013^2 + 2*A123^2 + 2*A134^2
274- - 10*A13*A01234 + 2*A01234^2, -6*A013^2 + 2*A01*A01234
275- + 2*A03*A01234 + 2*A13*A01234, 2*A023^2 + 2*A123^2 + 2*A234^2
276- - 10*A23*A01234 + 2*A01234^2, -6*A023^2 + 2*A02*A01234
277- + 2*A03*A01234 + 2*A23*A01234, -6*A123^2 + 2*A12*A01234
278- + 2*A13*A01234 + 2*A23*A01234, 2*A014^2 + 2*A024^2 + 2*A034^2
279- - 10*A04*A01234 + 2*A01234^2, 2*A014^2 + 2*A124^2 + 2*A134^2
280- - 10*A14*A01234 + 2*A01234^2, -6*A014^2 + 2*A01*A01234
281- + 2*A04*A01234 + 2*A14*A01234, 2*A024^2 + 2*A124^2 + 2*A234^2
282- - 10*A24*A01234 + 2*A01234^2, -6*A024^2 + 2*A02*A01234
283- + 2*A04*A01234 + 2*A24*A01234, -6*A124^2 + 2*A12*A01234
284- + 2*A14*A01234 + 2*A24*A01234, 2*A034^2 + 2*A134^2 + 2*A234^2
285- - 10*A34*A01234 + 2*A01234^2, -6*A034^2 + 2*A03*A01234
286- + 2*A04*A01234 + 2*A34*A01234, -6*A134^2 + 2*A13*A01234
287- + 2*A14*A01234 + 2*A34*A01234, -6*A234^2 + 2*A23*A01234
288- + 2*A24*A01234 + 2*A34*A01234, -2*A01*A01234 - 2*A02*A01234
289- - 2*A03*A01234 - 2*A04*A01234 - 2*A12*A01234 - 2*A13*A01234
290- - 2*A14*A01234 - 2*A23*A01234 - 2*A24*A01234 - 2*A34*A01234
291- - 20*A01234^2], 2: [2*A01234^3, 2*A01234^3, 2*A01234^3,
292- 6*A01234^3, 2*A01234^3, 2*A01234^3, 6*A01234^3, 2*A01234^3,
293- 6*A01234^3, 6*A01234^3, 2*A01234^3, 2*A01234^3, 6*A01234^3,
294- 2*A01234^3, 6*A01234^3, 6*A01234^3, 2*A01234^3, 6*A01234^3,
295- 6*A01234^3, 6*A01234^3, -20*A01234^3], 3: [0]}
267+ {0: [-2*A01 - 2*A02 - 2*A03 - 2*A04 - 2*A12 - 2*A13 - 2*A14 - 2*A23
268+ - 2*A24 - 2*A34 - 6*A012 - 6*A013 - 6*A014 - 6*A023 - 6*A024
269+ - 6*A034 - 6*A123 - 6*A124 - 6*A134 - 6*A234 - 20*A01234],
270+ 1: [2*A012^2 + 2*A013^2 + 2*A014^2 - 10*A01*A01234 + 2*A01234^2,
271+ 2*A012^2 + 2*A123^2 + 2*A124^2 - 10*A12*A01234 + 2*A01234^2,
272+ 2*A012^2 + 2*A023^2 + 2*A024^2 - 10*A02*A01234 + 2*A01234^2,
273+ -6*A012^2 + 2*A01*A01234 + 2*A02*A01234 + 2*A12*A01234,
274+ 2*A023^2 + 2*A123^2 + 2*A234^2 - 10*A23*A01234 + 2*A01234^2,
275+ 2*A013^2 + 2*A123^2 + 2*A134^2 - 10*A13*A01234 + 2*A01234^2,
276+ -6*A123^2 + 2*A12*A01234 + 2*A13*A01234 + 2*A23*A01234,
277+ 2*A013^2 + 2*A023^2 + 2*A034^2 - 10*A03*A01234 + 2*A01234^2,
278+ -6*A013^2 + 2*A01*A01234 + 2*A03*A01234 + 2*A13*A01234,
279+ -6*A023^2 + 2*A02*A01234 + 2*A03*A01234 + 2*A23*A01234,
280+ 2*A034^2 + 2*A134^2 + 2*A234^2 - 10*A34*A01234 + 2*A01234^2,
281+ 2*A024^2 + 2*A124^2 + 2*A234^2 - 10*A24*A01234 + 2*A01234^2,
282+ -6*A234^2 + 2*A23*A01234 + 2*A24*A01234 + 2*A34*A01234,
283+ 2*A014^2 + 2*A124^2 + 2*A134^2 - 10*A14*A01234 + 2*A01234^2,
284+ -6*A124^2 + 2*A12*A01234 + 2*A14*A01234 + 2*A24*A01234,
285+ -6*A134^2 + 2*A13*A01234 + 2*A14*A01234 + 2*A34*A01234,
286+ 2*A014^2 + 2*A024^2 + 2*A034^2 - 10*A04*A01234 + 2*A01234^2,
287+ -6*A014^2 + 2*A01*A01234 + 2*A04*A01234 + 2*A14*A01234,
288+ -6*A024^2 + 2*A02*A01234 + 2*A04*A01234 + 2*A24*A01234,
289+ -6*A034^2 + 2*A03*A01234 + 2*A04*A01234 + 2*A34*A01234,
290+ -2*A01*A01234 - 2*A02*A01234 - 2*A03*A01234 - 2*A04*A01234
291+ - 2*A12*A01234 - 2*A13*A01234 - 2*A14*A01234 - 2*A23*A01234
292+ - 2*A24*A01234 - 2*A34*A01234 - 20*A01234^2],
293+ 2: [2*A01234^3, 2*A01234^3, 2*A01234^3, 6*A01234^3, 2*A01234^3,
294+ 2*A01234^3, 6*A01234^3, 2*A01234^3, 6*A01234^3, 6*A01234^3,
295+ 2*A01234^3, 2*A01234^3, 6*A01234^3, 2*A01234^3, 6*A01234^3,
296+ 6*A01234^3, 2*A01234^3, 6*A01234^3, 6*A01234^3, 6*A01234^3,
297+ -20*A01234^3],
298+ 3: [0]}
296299 """
297300 w = sum (len (F ) * (len (self .matroid ().groundset ()) - len (F )) * gen
298301 for F , gen in self .defining_ideal ().flats_to_generator_dict ().items ())
0 commit comments