@@ -202,8 +202,8 @@ cdef class Heilbronn:
202202 b[i] = (u * self .list.v[4 * i+ 1 ]) % N + (v * self .list.v[4 * i+ 3 ]) % N
203203 else :
204204 for i in range (self .length):
205- a[i] = llong_prod_mod(u,self .list.v[4 * i],N) + llong_prod_mod(v,self .list.v[4 * i+ 2 ], N)
206- b[i] = llong_prod_mod(u,self .list.v[4 * i+ 1 ],N) + llong_prod_mod(v,self .list.v[4 * i+ 3 ], N)
205+ a[i] = llong_prod_mod(u, self .list.v[4 * i], N) + llong_prod_mod(v, self .list.v[4 * i+ 2 ], N)
206+ b[i] = llong_prod_mod(u, self .list.v[4 * i+ 1 ], N) + llong_prod_mod(v, self .list.v[4 * i+ 3 ], N)
207207 sig_off()
208208
209209 cdef apply_to_polypart(self , fmpz_poly_t* ans, int i, int k):
@@ -283,8 +283,8 @@ cdef class Heilbronn:
283283 else :
284284 for i in range (self .length):
285285 sig_check()
286- a = llong_prod_mod(u,self .list.v[4 * i],N) + llong_prod_mod(v,self .list.v[4 * i+ 2 ], N)
287- b = llong_prod_mod(u,self .list.v[4 * i+ 1 ],N) + llong_prod_mod(v,self .list.v[4 * i+ 3 ], N)
286+ a = llong_prod_mod(u, self .list.v[4 * i], N) + llong_prod_mod(v, self .list.v[4 * i+ 2 ], N)
287+ b = llong_prod_mod(u, self .list.v[4 * i+ 1 ], N) + llong_prod_mod(v, self .list.v[4 * i+ 3 ], N)
288288 export.c_p1_normalize_llong(N, a, b, & c, & d, & s, 0 )
289289 X = (c, d)
290290 if X in M:
@@ -368,15 +368,15 @@ cdef class HeilbronnCremona(Heilbronn):
368368 L = & self .list
369369 p = self .p
370370
371- list_append4(L, 1 ,0 , 0 , p)
371+ list_append4(L, 1 , 0 , 0 , p)
372372
373373 # When p==2, then Heilbronn matrices are
374374 # [[1,0,0,2], [2,0,0,1], [2,1,0,1], [1,0,1,2]]
375375 # which are not given by the algorithm below.
376376 if p == 2 :
377- list_append4(L, 2 ,0 , 0 , 1 )
378- list_append4(L, 2 ,1 , 0 , 1 )
379- list_append4(L, 1 ,0 , 1 , 2 )
377+ list_append4(L, 2 , 0 , 0 , 1 )
378+ list_append4(L, 2 , 1 , 0 , 1 )
379+ list_append4(L, 1 , 0 , 1 , 2 )
380380 self .length = 4
381381 return
382382
@@ -489,20 +489,20 @@ cdef class HeilbronnMerel(Heilbronn):
489489
490490 sig_on()
491491 for a in range (1 , n+ 1 ):
492- # # We have ad-bc=n so c=0 and ad=n, or b=(ad-n)/c
493- # # Must have ad - n >= 0, so d must be >= Ceiling(n/a).
492+ # We have ad-bc=n so c=0 and ad=n, or b=(ad-n)/c
493+ # Must have ad - n >= 0, so d must be >= Ceiling(n/a).
494494 q = n // a
495495 if q* a == n:
496496 d = q
497497 for b in range (a):
498- list_append4(L, a,b, 0 , d)
498+ list_append4(L, a, b, 0 , d)
499499 for c in range (1 , d):
500- list_append4(L, a,0 ,c, d)
500+ list_append4(L, a, 0 , c, d)
501501 for d in range (q+ 1 , n+ 1 ):
502502 bc = (< llong> a) * (< llong> d) - (< llong> n)
503- # # Divisor c of bc must satisfy Floor(bc/c) lt a and c lt d.
504- # # c ge (bc div a + 1) <=> Floor(bc/c) lt a (for integers)
505- # # c le d - 1 <=> c lt d
503+ # Divisor c of bc must satisfy Floor(bc/c) lt a and c lt d.
504+ # c ge (bc div a + 1) <=> Floor(bc/c) lt a (for integers)
505+ # c le d - 1 <=> c lt d
506506 for c in range (bc // a + 1 , d):
507507 if bc % c == 0 :
508508 list_append4(L, a, bc // c, c, d)
@@ -569,7 +569,7 @@ def hecke_images_gamma0_weight2(int u, int v, int N, indices, R):
569569 cdef Heilbronn H
570570
571571 t = verbose(" computing non-reduced images of symbol under Hecke operators" ,
572- level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
572+ level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
573573 for i, n in enumerate (indices):
574574 # List the Heilbronn matrices of determinant n defined by Cremona or Merel
575575 H = HeilbronnCremona(n) if is_prime(n) else HeilbronnMerel(n)
@@ -601,25 +601,25 @@ def hecke_images_gamma0_weight2(int u, int v, int N, indices, R):
601601 sig_free(b)
602602
603603 t = verbose(" finished computing non-reduced images" ,
604- t, level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
604+ t, level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
605605
606606 t = verbose(" Now reducing images of symbol" ,
607- level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
607+ level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
608608
609609 # Return the product T * R, whose rows are the image of (u,v) under
610610 # the Hecke operators T_n for n in indices.
611611 if max (indices) <= 30 : # In this case T tends to be very sparse
612612 ans = T.sparse_matrix()._matrix_times_matrix_dense(R)
613613 verbose(" did reduction using sparse multiplication" ,
614- t, level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
614+ t, level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
615615 elif R.is_sparse():
616616 ans = T * R.dense_matrix()
617617 verbose(" did reduction using dense multiplication" ,
618- t, level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
618+ t, level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
619619 else :
620620 ans = T * R
621621 verbose(" did reduction using dense multiplication" ,
622- t, level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
622+ t, level = 1 , caller_name = ' hecke_images_gamma0_weight2' )
623623
624624 if original_base_ring != QQ:
625625 ans = ans.change_ring(original_base_ring)
@@ -700,7 +700,7 @@ def hecke_images_nonquad_character_weight2(int u, int v, int N, indices, chi, R)
700700 cdef Heilbronn H
701701
702702 t = verbose(" computing non-reduced images of symbol under Hecke operators" ,
703- level = 1 , caller_name = ' hecke_images_character_weight2' )
703+ level = 1 , caller_name = ' hecke_images_character_weight2' )
704704
705705 # Make a matrix over the rational numbers each of whose columns
706706 # are the values of the character chi.
0 commit comments