Skip to content

Commit 3e704a6

Browse files
changed [Read1968] to [Rea1968], added [Rea1968]_ under chromatic_polynomial, changed the reference to previous one
1 parent 99a9467 commit 3e704a6

File tree

2 files changed

+5
-6
lines changed

2 files changed

+5
-6
lines changed

src/doc/en/reference/references/index.rst

Lines changed: 3 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -5644,6 +5644,9 @@ REFERENCES:
56445644
Congressus numerantium, 1994.
56455645
Pages 97--110
56465646
5647+
.. [Rea1968] Ronald C. Read, An improved method for computing the chromatic polynomials of
5648+
sparse graphs.
5649+
56475650
.. [Rea2004] Nathan Reading.
56485651
*Cambrian Lattices*.
56495652
:arxiv:`math/0402086v2`.
@@ -5686,10 +5689,6 @@ REFERENCES:
56865689
`Downloadable from Reutenauer's website
56875690
<http://www.lacim.uqam.ca/~christo/Publi%C3%A9s/2003/free%20Lie%20algebras.pdf>`_
56885691
5689-
.. [Read1968] Ronald C. Read, *An Introduction to Chromatic Polynomials*,
5690-
Journal of Combinatorial Theory 4 (1968), 52-71.
5691-
:doi:`10.1016/S0021-9800(68)80087-0`.
5692-
56935692
.. [Rho69] John Rhodes, *Characters and complexity of finite semigroups*
56945693
\J. Combinatorial Theory, vol 6, 1969
56955694

src/sage/graphs/chrompoly.pyx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@ AUTHORS:
1010
1111
REFERENCE:
1212
13-
See [Read1968]_ and the :wikipedia:`Chromatic_polynomial` for more details on this notion in graphs.
13+
See [Rea1968]_ and the :wikipedia:`Chromatic_polynomial` for more details on this notion in graphs.
1414
1515
"""
1616

@@ -41,7 +41,7 @@ def chromatic_polynomial(G, return_tree_basis=False, algorithm='C', cache=None):
4141
Compute the chromatic polynomial of the graph G.
4242
4343
The algorithm used is a recursive one, based on the following observations
44-
of Read:
44+
of Read [Rea1968]_:
4545
4646
- The chromatic polynomial of a tree on n vertices is x(x-1)^(n-1).
4747

0 commit comments

Comments
 (0)