Skip to content

Commit bf79d5c

Browse files
committed
fix docstring, fix whitespace around = and ,
1 parent b0f09d9 commit bf79d5c

File tree

1 file changed

+30
-27
lines changed

1 file changed

+30
-27
lines changed

src/sage/modular/arithgroup/farey_symbol.pyx

Lines changed: 30 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -279,7 +279,7 @@ cdef class Farey:
279279
[ -3 1]
280280
[-40 13]
281281
"""
282-
gens_dict = {g:i+1 for i,g in enumerate(self.generators())}
282+
gens_dict = {g: i+1 for i, g in enumerate(self.generators())}
283283
ans = []
284284
for pm in self.pairing_matrices():
285285
a, b, c, d = pm.matrix().list()
@@ -331,7 +331,7 @@ cdef class Farey:
331331
sage: (-g.matrix()).is_one()
332332
True
333333
"""
334-
for i,g in enumerate(self.generators()):
334+
for i, g in enumerate(self.generators()):
335335
m = g.matrix()
336336
if (-m).is_one():
337337
return [i + 1]
@@ -342,15 +342,17 @@ cdef class Farey:
342342
return 3 * [i + 1]
343343
return []
344344

345-
def word_problem(self, M, output = 'standard', check = True):
345+
def word_problem(self, M, output='standard', check=True):
346346
r"""
347347
Solve the word problem (up to sign) using this Farey symbol.
348348
349349
INPUT:
350350
351351
- ``M`` -- an element `M` of `\SL_2(\ZZ)`
352-
- ``output`` -- (default: ``'standard'``) should be one of ``'standard'``,
353-
``'syllables'``, ``'gens'``.
352+
353+
- ``output`` -- (default: ``'standard'``) should be one of
354+
``'standard'``, ``'syllables'``, ``'gens'``.
355+
354356
- ``check`` -- boolean (default: ``True``); whether to check for
355357
correct input and output
356358
@@ -359,17 +361,17 @@ cdef class Farey:
359361
A solution to the word problem for the matrix `M`.
360362
The format depends on the ``output`` parameter, as follows.
361363
362-
- ``standard`` returns the so called the Tietze representation,
363-
consists of a tuple of nonzero integers `i`, where if `i` > 0
364-
then it indicates the `i`-th generator (that is, ``self.generators()[0]``
365-
would correspond to `i` = 1), and if `i` < 0 then it indicates
366-
the inverse of the `i`-th generator.
367-
- ``syllables`` returns a tuple of tuples of the form `(i,n)`, where
368-
`(i,n)` represents ``self.generators()[i] ^ n``,
364+
- ``'standard'`` returns the so called Tietze representation,
365+
which consists of a tuple of nonzero integers. A positive
366+
integer `i` indicates the `i`-th generator (that is,
367+
``self.generators()[i-1]``), while a negative integer `i`
368+
indicates the inverse of the `i`-th generator.
369+
- ``'syllables'`` returns a tuple of tuples of the form
370+
`(i, n)`, where `(i, n)` represents ``self.generators()[i] ^ n``,
369371
whose product equals `M` up to sign.
370-
- ``gens`` returns tuple of tuples of the form `(g,n)`,
371-
`(g,n)` such that the product of the matrices `g^n`
372-
equals `M` up to sign.
372+
- ``'gens'`` returns a tuple of pairs `(g, n)`, where `g` is a
373+
matrix and `n` an integer, such that the product of the
374+
matrices `g^n` equals `M` up to sign.
373375
374376
EXAMPLES::
375377
@@ -385,7 +387,7 @@ cdef class Farey:
385387
sage: g
386388
[-5048053 586303]
387389
[-5558280 645563]
388-
sage: F.word_problem(g, output = 'gens')
390+
sage: F.word_problem(g, output='gens')
389391
((
390392
[109 -10]
391393
[120 -11], 1
@@ -402,7 +404,7 @@ cdef class Farey:
402404
[17 -2]
403405
[60 -7], 1
404406
))
405-
sage: F.word_problem(g, output = 'syllables')
407+
sage: F.word_problem(g, output='syllables')
406408
((3, 1), (10, 2), (8, -1), (5, 1))
407409
408410
TESTS:
@@ -413,7 +415,7 @@ cdef class Farey:
413415
sage: G = Gamma0(10)
414416
sage: F = G.farey_symbol()
415417
sage: g = G([-701,-137,4600,899])
416-
sage: g1 = prod(F.generators()[i]**a for i,a in F.word_problem(g, output = 'syllables'))
418+
sage: g1 = prod(F.generators()[i]**a for i, a in F.word_problem(g, output='syllables'))
417419
sage: g == g1
418420
True
419421
@@ -426,15 +428,16 @@ cdef class Farey:
426428
Check that :issue:`20347` is solved::
427429
428430
sage: from sage.misc.misc_c import prod
429-
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)(3,4)",S3="(1,2,3)")
431+
sage: G = ArithmeticSubgroup_Permutation(S2="(1,2)(3,4)", S3="(1,2,3)")
430432
sage: S = G.farey_symbol()
431-
sage: g1,g2 = S.generators()
433+
sage: g1, g2 = S.generators()
432434
sage: g = g1^3 * g2^-2 * g1 * g2
433435
sage: S.word_problem(g)
434436
(2, 2, 2, 1, 1, 1, 2, 1, 2)
435-
sage: h = prod(S.generators()[i]**a for i,a in S.word_problem(g, output = 'syllables'))
437+
sage: h = prod(S.generators()[i]**a for i, a in S.word_problem(g, output='syllables'))
436438
sage: g == h
437439
True
440+
438441
"""
439442
if output not in ['standard', 'syllables', 'gens']:
440443
raise ValueError('Unrecognized output format')
@@ -464,7 +467,7 @@ cdef class Farey:
464467
if sgn == -1:
465468
beta, mbeta = mbeta, beta
466469

467-
gens_dict = {g:i+1 for i,g in enumerate(self.generators())}
470+
gens_dict = {g: i+1 for i, g in enumerate(self.generators())}
468471
extra_tietze = []
469472
if beta.is_one():
470473
found = True
@@ -501,13 +504,13 @@ cdef class Farey:
501504
for i in range(len(tietze)):
502505
t = tietze[i]
503506
tmp = tmp * gens[t-1] if t > 0 else tmp * gens[-t-1]**-1
504-
assert tmp.matrix() == M.matrix(),'%s %s %s' % (tietze, tmp.matrix(),M.matrix())
507+
assert tmp.matrix() == M.matrix(), '%s %s %s' % (tietze, tmp.matrix(), M.matrix())
505508
if output == 'standard':
506509
return tuple(tietze)
507510
if output == 'syllables':
508-
return tuple((a-1,len(list(g))) if a > 0 else (-a-1,-len(list(g))) for a,g in groupby(tietze))
511+
return tuple((a-1, len(list(g))) if a > 0 else (-a-1, -len(list(g))) for a, g in groupby(tietze))
509512
else: # output == 'gens'
510-
return tuple((gens[a-1],len(list(g))) if a > 0 else (gens[-a-1],-len(list(g))) for a, g in groupby(tietze))
513+
return tuple((gens[a-1], len(list(g))) if a > 0 else (gens[-a-1], -len(list(g))) for a, g in groupby(tietze))
511514

512515
def __contains__(self, M):
513516
r"""
@@ -594,9 +597,9 @@ cdef class Farey:
594597
595598
EXAMPLES::
596599
597-
sage: FareySymbol(Gamma0(11))._latex_(forced_format = 'plain')
600+
sage: FareySymbol(Gamma0(11))._latex_(forced_format='plain')
598601
'\\left( -\\infty\\underbrace{\\quad}_{1} 0\\underbrace{\\quad}_{2} \\frac{1}{3}\\underbrace{\\quad}_{3} \\frac{1}{2}\\underbrace{\\quad}_{2} \\frac{2}{3}\\underbrace{\\quad}_{3} 1\\underbrace{\\quad}_{1} \\infty\\right)'
599-
sage: FareySymbol(Gamma0(11))._latex_(forced_format = 'xymatrix')
602+
sage: FareySymbol(Gamma0(11))._latex_(forced_format='xymatrix')
600603
'\\begin{xy}\\xymatrix{& -\\infty \\ar@{-}@/_1pc/[r]_{1}& 0 \\ar@{-}@/_1pc/[r]_{2}& \\frac{1}{3} \\ar@{-}@/_1pc/[r]_{3}& \\frac{1}{2} \\ar@{-}@/_1pc/[r]_{2}& \\frac{2}{3} \\ar@{-}@/_1pc/[r]_{3}& 1 \\ar@{-}@/_1pc/[r]_{1}& \\infty }\\end{xy}'
601604
602605
sage: 'xymatrix' in FareySymbol(Gamma0(11))._latex_()

0 commit comments

Comments
 (0)