@@ -4803,8 +4803,8 @@ def order(self):
4803
4803
"""
4804
4804
Return the number of vertices.
4805
4805
4806
- Note that ``len(G)`` and :meth:`num_verts ` also return the number of
4807
- vertices in `G`.
4806
+ Note that ``len(G)`` and :meth:`n_vertices ` also return the
4807
+ number of vertices in `G`.
4808
4808
4809
4809
EXAMPLES::
4810
4810
@@ -4817,29 +4817,35 @@ def order(self):
4817
4817
sage: G = graphs.TetrahedralGraph()
4818
4818
sage: len(G)
4819
4819
4
4820
+
4820
4821
"""
4821
4822
return self._backend.num_verts()
4822
4823
4823
4824
__len__ = order
4824
4825
4825
4826
num_verts = order
4826
4827
4828
+ n_vertices = order
4829
+
4827
4830
def size(self):
4828
4831
"""
4829
4832
Return the number of edges.
4830
4833
4831
- Note that :meth:`num_edges ` also returns the number of edges in `G`.
4834
+ Note that :meth:`n_edges ` also returns the number of edges in `G`.
4832
4835
4833
4836
EXAMPLES::
4834
4837
4835
4838
sage: G = graphs.PetersenGraph()
4836
4839
sage: G.size()
4837
4840
15
4841
+
4838
4842
"""
4839
4843
return self._backend.num_edges(self._directed)
4840
4844
4841
4845
num_edges = size
4842
4846
4847
+ n_edges = size
4848
+
4843
4849
def eulerian_circuit(self, return_vertices=False, labels=True, path=False):
4844
4850
r"""
4845
4851
Return a list of edges forming an Eulerian circuit if one exists.
@@ -6987,7 +6993,7 @@ def faces(self, embedding=None):
6987
6993
faces.append(path)
6988
6994
return faces
6989
6995
6990
- def num_faces (self, embedding=None):
6996
+ def n_faces (self, embedding=None):
6991
6997
"""
6992
6998
Return the number of faces of an embedded graph.
6993
6999
@@ -7074,6 +7080,8 @@ def num_faces(self, embedding=None):
7074
7080
F += g.num_faces(emb) - 1
7075
7081
return F
7076
7082
7083
+ num_faces = n_faces
7084
+
7077
7085
def planar_dual(self, embedding=None):
7078
7086
"""
7079
7087
Return the planar dual of an embedded graph.
0 commit comments