|
| 1 | +import numba |
| 2 | +import numpy as np |
| 3 | +from collections import namedtuple |
| 4 | + |
| 5 | +NumbaKDTree = namedtuple("KDTree", ["data", "idx_array", "node_data", "node_bounds"]) |
| 6 | + |
| 7 | + |
| 8 | +def kdtree_to_numba(sklearn_kdtree): |
| 9 | + """Convert a scikit-learn KDTree object to a NumbaKDTree object.""" |
| 10 | + data, idx_array, node_data, node_bounds = sklearn_kdtree.get_arrays() |
| 11 | + return NumbaKDTree(data, idx_array, node_data, node_bounds) |
| 12 | + |
| 13 | + |
| 14 | +@numba.njit( |
| 15 | + [ |
| 16 | + "f4(f4[::1],f4[::1])", |
| 17 | + "f8(f8[::1],f8[::1])", |
| 18 | + "f8(f4[::1],f8[::1])", |
| 19 | + ], |
| 20 | + fastmath=True, |
| 21 | + locals={ |
| 22 | + "dim": numba.types.intp, |
| 23 | + "i": numba.types.uint16, |
| 24 | + }, |
| 25 | +) |
| 26 | +def rdist(x, y): |
| 27 | + """Computes the squared Euclidean distance between two points.""" |
| 28 | + result = 0.0 |
| 29 | + dim = x.shape[0] |
| 30 | + for i in range(dim): |
| 31 | + diff = x[i] - y[i] |
| 32 | + result += diff * diff |
| 33 | + |
| 34 | + return result |
| 35 | + |
| 36 | + |
| 37 | +@numba.njit( |
| 38 | + [ |
| 39 | + "void(f4[::1],i4[::1],f4,i4)", |
| 40 | + "void(f8[::1],i4[::1],f8,i4)", |
| 41 | + ], |
| 42 | + fastmath=True, |
| 43 | + locals={ |
| 44 | + "size": numba.types.intp, |
| 45 | + "i": numba.types.uint16, |
| 46 | + "ic1": numba.types.uint16, |
| 47 | + "ic2": numba.types.uint16, |
| 48 | + "i_swap": numba.types.uint16, |
| 49 | + }, |
| 50 | +) |
| 51 | +def simple_heap_push(priorities, indices, p, n): |
| 52 | + """Inserts value (index) in to priority heap (distance).""" |
| 53 | + # if p >= priorities[0]: |
| 54 | + # return 0 |
| 55 | + |
| 56 | + size = priorities.shape[0] |
| 57 | + |
| 58 | + # insert val at position zero |
| 59 | + priorities[0] = p |
| 60 | + indices[0] = n |
| 61 | + |
| 62 | + # descend the heap, swapping values until the max heap criterion is met |
| 63 | + i = 0 |
| 64 | + while True: |
| 65 | + ic1 = 2 * i + 1 |
| 66 | + ic2 = ic1 + 1 |
| 67 | + |
| 68 | + if ic1 >= size: |
| 69 | + break |
| 70 | + elif ic2 >= size: |
| 71 | + if priorities[ic1] > p: |
| 72 | + i_swap = ic1 |
| 73 | + else: |
| 74 | + break |
| 75 | + elif priorities[ic1] >= priorities[ic2]: |
| 76 | + if p < priorities[ic1]: |
| 77 | + i_swap = ic1 |
| 78 | + else: |
| 79 | + break |
| 80 | + else: |
| 81 | + if p < priorities[ic2]: |
| 82 | + i_swap = ic2 |
| 83 | + else: |
| 84 | + break |
| 85 | + |
| 86 | + priorities[i] = priorities[i_swap] |
| 87 | + indices[i] = indices[i_swap] |
| 88 | + |
| 89 | + i = i_swap |
| 90 | + |
| 91 | + priorities[i] = p |
| 92 | + indices[i] = n |
| 93 | + |
| 94 | + # return 1 |
| 95 | + |
| 96 | + |
| 97 | +@numba.njit() |
| 98 | +def siftdown(heap1, heap2, elt): |
| 99 | + """Moves the element at index elt to its correct position in a heap.""" |
| 100 | + while elt * 2 + 1 < heap1.shape[0]: |
| 101 | + left_child = elt * 2 + 1 |
| 102 | + right_child = left_child + 1 |
| 103 | + swap = elt |
| 104 | + |
| 105 | + if heap1[swap] < heap1[left_child]: |
| 106 | + swap = left_child |
| 107 | + |
| 108 | + if right_child < heap1.shape[0] and heap1[swap] < heap1[right_child]: |
| 109 | + swap = right_child |
| 110 | + |
| 111 | + if swap == elt: |
| 112 | + break |
| 113 | + else: |
| 114 | + heap1[elt], heap1[swap] = heap1[swap], heap1[elt] |
| 115 | + heap2[elt], heap2[swap] = heap2[swap], heap2[elt] |
| 116 | + elt = swap |
| 117 | + |
| 118 | + |
| 119 | +@numba.njit(parallel=True) |
| 120 | +def deheap_sort(distances, indices): |
| 121 | + """Sorts the heaps and returns the sorted distances and indices.""" |
| 122 | + for i in numba.prange(indices.shape[0]): |
| 123 | + # starting from the end of the array and moving back |
| 124 | + for j in range(indices.shape[1] - 1, 0, -1): |
| 125 | + indices[i, 0], indices[i, j] = indices[i, j], indices[i, 0] |
| 126 | + distances[i, 0], distances[i, j] = distances[i, j], distances[i, 0] |
| 127 | + |
| 128 | + siftdown(distances[i, :j], indices[i, :j], 0) |
| 129 | + |
| 130 | + return distances, indices |
| 131 | + |
| 132 | + |
| 133 | +@numba.njit( |
| 134 | + [ |
| 135 | + "f4(f4[::1],f4[::1],f4[::1])", |
| 136 | + "f4(f8[::1],f8[::1],f4[::1])", |
| 137 | + "f4(f8[::1],f8[::1],f8[::1])", |
| 138 | + ], |
| 139 | + fastmath=True, |
| 140 | + locals={ |
| 141 | + "dim": numba.types.intp, |
| 142 | + "i": numba.types.uint16, |
| 143 | + }, |
| 144 | +) |
| 145 | +def point_to_node_lower_bound_rdist(upper, lower, pt): |
| 146 | + """ |
| 147 | + Calculate the lower bound of the squared Euclidean distance between a point |
| 148 | + and a node in a KD-tree. |
| 149 | + """ |
| 150 | + result = 0.0 |
| 151 | + dim = pt.shape[0] |
| 152 | + for i in range(dim): |
| 153 | + d_lo = upper[i] - pt[i] if upper[i] > pt[i] else 0.0 |
| 154 | + d_hi = pt[i] - lower[i] if pt[i] > lower[i] else 0.0 |
| 155 | + d = d_lo + d_hi |
| 156 | + result += d * d |
| 157 | + |
| 158 | + return result |
| 159 | + |
| 160 | + |
| 161 | +@numba.njit( |
| 162 | + locals={ |
| 163 | + "node": numba.types.intp, |
| 164 | + "left": numba.types.intp, |
| 165 | + "right": numba.types.intp, |
| 166 | + "d": numba.types.float32, |
| 167 | + "idx": numba.types.uint32, |
| 168 | + } |
| 169 | +) |
| 170 | +def tree_query_recursion(tree, node, point, heap_p, heap_i, dist_lower_bound): |
| 171 | + """ |
| 172 | + Traverses a KD-tree recursively to find $k$ nearest points. Updates heap |
| 173 | + with neighbors inplace. |
| 174 | + """ |
| 175 | + node_info = tree.node_data[node] |
| 176 | + |
| 177 | + # ------------------------------------------------------------ |
| 178 | + # Case 1: query point is outside node radius: trim node from the query |
| 179 | + if dist_lower_bound > heap_p[0]: |
| 180 | + return |
| 181 | + |
| 182 | + # ------------------------------------------------------------ |
| 183 | + # Case 2: this is a leaf node. Update set of nearby points |
| 184 | + elif node_info.is_leaf: |
| 185 | + for i in range(node_info.idx_start, node_info.idx_end): |
| 186 | + idx = tree.idx_array[i] |
| 187 | + d = rdist(point, tree.data[idx]) |
| 188 | + if d < heap_p[0]: |
| 189 | + simple_heap_push(heap_p, heap_i, d, idx) |
| 190 | + |
| 191 | + # ------------------------------------------------------------ |
| 192 | + # Case 3: Node is not a leaf. Recursively query subnodes starting with the |
| 193 | + # closest |
| 194 | + else: |
| 195 | + left = 2 * node + 1 |
| 196 | + right = left + 1 |
| 197 | + dist_lower_bound_left = point_to_node_lower_bound_rdist( |
| 198 | + tree.node_bounds[0, left], tree.node_bounds[1, left], point |
| 199 | + ) |
| 200 | + dist_lower_bound_right = point_to_node_lower_bound_rdist( |
| 201 | + tree.node_bounds[0, right], tree.node_bounds[1, right], point |
| 202 | + ) |
| 203 | + |
| 204 | + # recursively query subnodes |
| 205 | + if dist_lower_bound_left <= dist_lower_bound_right: |
| 206 | + tree_query_recursion( |
| 207 | + tree, left, point, heap_p, heap_i, dist_lower_bound_left |
| 208 | + ) |
| 209 | + tree_query_recursion( |
| 210 | + tree, right, point, heap_p, heap_i, dist_lower_bound_right |
| 211 | + ) |
| 212 | + else: |
| 213 | + tree_query_recursion( |
| 214 | + tree, right, point, heap_p, heap_i, dist_lower_bound_right |
| 215 | + ) |
| 216 | + tree_query_recursion( |
| 217 | + tree, left, point, heap_p, heap_i, dist_lower_bound_left |
| 218 | + ) |
| 219 | + return |
| 220 | + |
| 221 | + |
| 222 | +@numba.njit(parallel=True) |
| 223 | +def parallel_tree_query(tree, data, k=10, output_rdist=False): |
| 224 | + """ |
| 225 | + Queries the KDTree for the k nearest neighbors of the given data points in |
| 226 | + parallel. |
| 227 | + """ |
| 228 | + result = ( |
| 229 | + np.full((data.shape[0], k), np.inf, dtype=np.float32), |
| 230 | + np.full((data.shape[0], k), -1, dtype=np.int32), |
| 231 | + ) |
| 232 | + |
| 233 | + for i in numba.prange(data.shape[0]): |
| 234 | + distance_lower_bound = point_to_node_lower_bound_rdist( |
| 235 | + tree.node_bounds[0, 0], tree.node_bounds[1, 0], data[i] |
| 236 | + ) |
| 237 | + heap_priorities, heap_indices = result[0][i], result[1][i] |
| 238 | + tree_query_recursion( |
| 239 | + tree, 0, data[i], heap_priorities, heap_indices, distance_lower_bound |
| 240 | + ) |
| 241 | + |
| 242 | + if output_rdist: |
| 243 | + return deheap_sort(result[0], result[1]) |
| 244 | + else: |
| 245 | + return deheap_sort(np.sqrt(result[0]), result[1]) |
0 commit comments