@@ -77,7 +77,10 @@ def kMST(data, num_neighbors=3, min_samples=1, epsilon=None, umap_kwargs=None):
7777 )
7878 with warn .catch_warnings ():
7979 warn .filterwarnings (
80- "ignore" , category = UserWarning , module = "umap.umap_" , lineno = 2010
80+ "ignore" ,
81+ category = UserWarning ,
82+ module = "umap.umap_" ,
83+ message = ".*is not an NNDescent object.*" ,
8184 )
8285 umap = UMAP (
8386 n_neighbors = mst_indices .shape [1 ],
@@ -133,7 +136,9 @@ class KMST(BaseEstimator):
133136 missing values. Use the graph_ and embedding_ attributes instead!
134137 """
135138
136- def __init__ (self , * , num_neighbors = 3 , min_samples = 1 , epsilon = None , umap_kwargs = None ):
139+ def __init__ (
140+ self , * , num_neighbors = 3 , min_samples = 1 , epsilon = None , umap_kwargs = None
141+ ):
137142 self .num_neighbors = num_neighbors
138143 self .min_samples = min_samples
139144 self .epsilon = epsilon
@@ -173,9 +178,7 @@ def fit(self, X, y=None, **fit_params):
173178 clean_data = X
174179
175180 kwargs = self .get_params ()
176- self .mst_indices_ , self .mst_distances_ , self ._umap = kMST (
177- clean_data , ** kwargs
178- )
181+ self .mst_indices_ , self .mst_distances_ , self ._umap = kMST (clean_data , ** kwargs )
179182 self .graph_ = self ._umap .graph_ .copy ()
180183 self .embedding_ = (
181184 self ._umap .embedding_ .copy () if hasattr (self ._umap , "embedding_" ) else None
0 commit comments