@@ -83,13 +83,13 @@ def tearDown(self):
8383
8484 def test_oof_pred_mode (self ):
8585
86- model = LogisticRegression (random_state = 0 )
86+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
8787 S_train_1 = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
8888 n_jobs = 1 , verbose = 0 , method = 'predict' ).reshape (- 1 , 1 )
8989 _ = model .fit (X_train , y_train )
9090 S_test_1 = model .predict (X_test ).reshape (- 1 , 1 )
9191
92- models = [LogisticRegression (random_state = 0 )]
92+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
9393 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
9494 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
9595 mode = 'oof_pred' , random_state = 0 , verbose = 0 , stratified = True )
@@ -110,12 +110,12 @@ def test_oof_pred_mode(self):
110110
111111 def test_oof_mode (self ):
112112
113- model = LogisticRegression (random_state = 0 )
113+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
114114 S_train_1 = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
115115 n_jobs = 1 , verbose = 0 , method = 'predict' ).reshape (- 1 , 1 )
116116 S_test_1 = None
117117
118- models = [LogisticRegression (random_state = 0 )]
118+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
119119 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
120120 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
121121 mode = 'oof' , random_state = 0 , verbose = 0 , stratified = True )
@@ -136,12 +136,12 @@ def test_oof_mode(self):
136136
137137 def test_pred_mode (self ):
138138
139- model = LogisticRegression (random_state = 0 )
139+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
140140 S_train_1 = None
141141 _ = model .fit (X_train , y_train )
142142 S_test_1 = model .predict (X_test ).reshape (- 1 , 1 )
143143
144- models = [LogisticRegression (random_state = 0 )]
144+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
145145 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
146146 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
147147 mode = 'pred' , random_state = 0 , verbose = 0 , stratified = True )
@@ -171,16 +171,16 @@ def test_oof_pred_bag_mode(self):
171171 y_tr = y_train [tr_index ]
172172 X_te = X_train [te_index ]
173173 y_te = y_train [te_index ]
174- model = LogisticRegression (random_state = 0 )
174+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
175175 _ = model .fit (X_tr , y_tr )
176176 S_test_temp [:, fold_counter ] = model .predict (X_test )
177177 S_test_1 = st .mode (S_test_temp , axis = 1 )[0 ]
178178
179- model = LogisticRegression (random_state = 0 )
179+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
180180 S_train_1 = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
181181 n_jobs = 1 , verbose = 0 , method = 'predict' ).reshape (- 1 , 1 )
182182
183- models = [LogisticRegression (random_state = 0 )]
183+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
184184 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
185185 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
186186 mode = 'oof_pred_bag' , random_state = 0 , verbose = 0 , stratified = True )
@@ -210,14 +210,14 @@ def test_pred_bag_mode(self):
210210 y_tr = y_train [tr_index ]
211211 X_te = X_train [te_index ]
212212 y_te = y_train [te_index ]
213- model = LogisticRegression (random_state = 0 )
213+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
214214 _ = model .fit (X_tr , y_tr )
215215 S_test_temp [:, fold_counter ] = model .predict (X_test )
216216 S_test_1 = st .mode (S_test_temp , axis = 1 )[0 ]
217217
218218 S_train_1 = None
219219
220- models = [LogisticRegression (random_state = 0 )]
220+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
221221 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
222222 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
223223 mode = 'pred_bag' , random_state = 0 , verbose = 0 , stratified = True )
@@ -242,13 +242,13 @@ def test_pred_bag_mode(self):
242242
243243 def test_oof_pred_mode_proba (self ):
244244
245- model = LogisticRegression (random_state = 0 )
245+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
246246 S_train_1 = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
247247 n_jobs = 1 , verbose = 0 , method = 'predict_proba' )
248248 _ = model .fit (X_train , y_train )
249249 S_test_1 = model .predict_proba (X_test )
250250
251- models = [LogisticRegression (random_state = 0 )]
251+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
252252 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
253253 regression = False , n_folds = n_folds , shuffle = False , stratified = True ,
254254 mode = 'oof_pred' , random_state = 0 , verbose = 0 , needs_proba = True , save_dir = temp_dir )
@@ -269,12 +269,12 @@ def test_oof_pred_mode_proba(self):
269269
270270 def test_oof_mode_proba (self ):
271271
272- model = LogisticRegression (random_state = 0 )
272+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
273273 S_train_1 = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
274274 n_jobs = 1 , verbose = 0 , method = 'predict_proba' )
275275 S_test_1 = None
276276
277- models = [LogisticRegression (random_state = 0 )]
277+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
278278 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
279279 regression = False , n_folds = n_folds , shuffle = False , stratified = True ,
280280 mode = 'oof' , random_state = 0 , verbose = 0 , needs_proba = True , save_dir = temp_dir )
@@ -295,12 +295,12 @@ def test_oof_mode_proba(self):
295295
296296 def test_pred_mode_proba (self ):
297297
298- model = LogisticRegression (random_state = 0 )
298+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
299299 S_train_1 = None
300300 _ = model .fit (X_train , y_train )
301301 S_test_1 = model .predict_proba (X_test )
302302
303- models = [LogisticRegression (random_state = 0 )]
303+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
304304 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
305305 regression = False , n_folds = n_folds , shuffle = False , stratified = True ,
306306 mode = 'pred' , random_state = 0 , verbose = 0 , needs_proba = True , save_dir = temp_dir )
@@ -331,18 +331,18 @@ def test_oof_pred_bag_mode_proba(self):
331331 y_tr = y_train [tr_index ]
332332 X_te = X_train [te_index ]
333333 y_te = y_train [te_index ]
334- model = LogisticRegression (random_state = 0 )
334+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
335335 _ = model .fit (X_tr , y_tr )
336336 col_slice_fold = slice (fold_counter * n_classes , fold_counter * n_classes + n_classes )
337337 S_test_temp [:, col_slice_fold ] = model .predict_proba (X_test )
338338 for class_id in range (n_classes ):
339339 S_test_1 [:, class_id ] = np .mean (S_test_temp [:, class_id ::n_classes ], axis = 1 )
340340
341- model = LogisticRegression (random_state = 0 )
341+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
342342 S_train_1 = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
343343 n_jobs = 1 , verbose = 0 , method = 'predict_proba' )
344344
345- models = [LogisticRegression (random_state = 0 )]
345+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
346346 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
347347 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
348348 mode = 'oof_pred_bag' , random_state = 0 , verbose = 0 , stratified = True , needs_proba = True )
@@ -382,7 +382,7 @@ def test_pred_bag_mode_proba(self):
382382 y_tr = y_train [tr_index ]
383383 X_te = X_train [te_index ]
384384 y_te = y_train [te_index ]
385- model = LogisticRegression (random_state = 0 )
385+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
386386 _ = model .fit (X_tr , y_tr )
387387 col_slice_fold = slice (fold_counter * n_classes , fold_counter * n_classes + n_classes )
388388 S_test_temp [:, col_slice_fold ] = model .predict_proba (X_test )
@@ -391,7 +391,7 @@ def test_pred_bag_mode_proba(self):
391391
392392 S_train_1 = None
393393
394- models = [LogisticRegression (random_state = 0 )]
394+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
395395 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
396396 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
397397 mode = 'pred_bag' , random_state = 0 , verbose = 0 , stratified = True , needs_proba = True )
@@ -425,17 +425,17 @@ def test_oof_pred_bag_mode_shuffle(self):
425425 y_tr = y_train [tr_index ]
426426 X_te = X_train [te_index ]
427427 y_te = y_train [te_index ]
428- model = LogisticRegression (random_state = 0 )
428+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
429429 _ = model .fit (X_tr , y_tr )
430430 S_test_temp [:, fold_counter ] = model .predict (X_test )
431431 S_test_1 = st .mode (S_test_temp , axis = 1 )[0 ]
432432
433- model = LogisticRegression (random_state = 0 )
433+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
434434 # !!! Important. Here we pass CV-generator not number of folds <cv = kf>
435435 S_train_1 = cross_val_predict (model , X_train , y = y_train , cv = kf ,
436436 n_jobs = 1 , verbose = 0 , method = 'predict' ).reshape (- 1 , 1 )
437437
438- models = [LogisticRegression (random_state = 0 )]
438+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
439439 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
440440 regression = False , n_folds = n_folds , shuffle = True , save_dir = temp_dir ,
441441 mode = 'oof_pred_bag' , random_state = 0 , verbose = 0 , stratified = True )
@@ -462,15 +462,15 @@ def test_oof_pred_bag_mode_shuffle(self):
462462 #---------------------------------------------------------------------------
463463 def test_oof_mode_metric (self ):
464464
465- model = LogisticRegression (random_state = 0 )
465+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
466466 scorer = make_scorer (accuracy_score )
467467 scores = cross_val_score (model , X_train , y = y_train , cv = n_folds ,
468468 scoring = scorer , n_jobs = 1 , verbose = 0 )
469469 mean_str_1 = '%.8f' % np .mean (scores )
470470 std_str_1 = '%.8f' % np .std (scores )
471471
472472
473- models = [LogisticRegression (random_state = 0 )]
473+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
474474 S_train , S_test = stacking (models , X_train , y_train , X_test ,
475475 regression = False , n_folds = n_folds , save_dir = temp_dir ,
476476 mode = 'oof' , random_state = 0 , verbose = 0 , stratified = True )
@@ -499,15 +499,15 @@ def test_oof_mode_metric(self):
499499 #---------------------------------------------------------------------------
500500 def test_oof_mode_metric_proba (self ):
501501
502- model = LogisticRegression (random_state = 0 )
502+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
503503 scorer = make_scorer (log_loss , needs_proba = True )
504504 scores = cross_val_score (model , X_train , y = y_train , cv = n_folds ,
505505 scoring = scorer , n_jobs = 1 , verbose = 0 )
506506 mean_str_1 = '%.8f' % np .mean (scores )
507507 std_str_1 = '%.8f' % np .std (scores )
508508
509509
510- models = [LogisticRegression (random_state = 0 )]
510+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )]
511511 S_train , S_test = stacking (models , X_train , y_train , X_test ,
512512 regression = False , n_folds = n_folds , save_dir = temp_dir ,
513513 mode = 'oof' , random_state = 0 , verbose = 0 , stratified = True ,
@@ -536,7 +536,7 @@ def test_oof_mode_metric_proba(self):
536536 def test_oof_pred_mode_2_models (self ):
537537
538538 # Model a
539- model = LogisticRegression (random_state = 0 )
539+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
540540 S_train_1_a = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
541541 n_jobs = 1 , verbose = 0 , method = 'predict' ).reshape (- 1 , 1 )
542542 _ = model .fit (X_train , y_train )
@@ -552,7 +552,7 @@ def test_oof_pred_mode_2_models(self):
552552 S_train_1 = np .c_ [S_train_1_a , S_train_1_b ]
553553 S_test_1 = np .c_ [S_test_1_a , S_test_1_b ]
554554
555- models = [LogisticRegression (random_state = 0 ),
555+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' ),
556556 GaussianNB ()]
557557 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
558558 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
@@ -584,12 +584,12 @@ def test_oof_pred_bag_mode_2_models(self):
584584 y_tr = y_train [tr_index ]
585585 X_te = X_train [te_index ]
586586 y_te = y_train [te_index ]
587- model = LogisticRegression (random_state = 0 )
587+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
588588 _ = model .fit (X_tr , y_tr )
589589 S_test_temp [:, fold_counter ] = model .predict (X_test )
590590 S_test_1_a = st .mode (S_test_temp , axis = 1 )[0 ]
591591
592- model = LogisticRegression (random_state = 0 )
592+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
593593 S_train_1_a = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
594594 n_jobs = 1 , verbose = 0 , method = 'predict' ).reshape (- 1 , 1 )
595595
@@ -615,7 +615,7 @@ def test_oof_pred_bag_mode_2_models(self):
615615 S_train_1 = np .c_ [S_train_1_a , S_train_1_b ]
616616 S_test_1 = np .c_ [S_test_1_a , S_test_1_b ]
617617
618- models = [LogisticRegression (random_state = 0 ),
618+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' ),
619619 GaussianNB ()]
620620 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
621621 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
@@ -639,7 +639,7 @@ def test_oof_pred_bag_mode_2_models(self):
639639 def test_oof_pred_mode_proba_2_models (self ):
640640
641641 # Model a
642- model = LogisticRegression (random_state = 0 )
642+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
643643 S_train_1_a = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
644644 n_jobs = 1 , verbose = 0 , method = 'predict_proba' )
645645 _ = model .fit (X_train , y_train )
@@ -655,7 +655,7 @@ def test_oof_pred_mode_proba_2_models(self):
655655 S_train_1 = np .c_ [S_train_1_a , S_train_1_b ]
656656 S_test_1 = np .c_ [S_test_1_a , S_test_1_b ]
657657
658- models = [LogisticRegression (random_state = 0 ),
658+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' ),
659659 GaussianNB ()]
660660 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
661661 regression = False , n_folds = n_folds , shuffle = False , stratified = True ,
@@ -689,14 +689,14 @@ def test_oof_pred_bag_mode_proba_2_models(self):
689689 y_tr = y_train [tr_index ]
690690 X_te = X_train [te_index ]
691691 y_te = y_train [te_index ]
692- model = LogisticRegression (random_state = 0 )
692+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
693693 _ = model .fit (X_tr , y_tr )
694694 col_slice_fold = slice (fold_counter * n_classes , fold_counter * n_classes + n_classes )
695695 S_test_temp [:, col_slice_fold ] = model .predict_proba (X_test )
696696 for class_id in range (n_classes ):
697697 S_test_1_a [:, class_id ] = np .mean (S_test_temp [:, class_id ::n_classes ], axis = 1 )
698698
699- model = LogisticRegression (random_state = 0 )
699+ model = LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' )
700700 S_train_1_a = cross_val_predict (model , X_train , y = y_train , cv = n_folds ,
701701 n_jobs = 1 , verbose = 0 , method = 'predict_proba' )
702702
@@ -727,7 +727,7 @@ def test_oof_pred_bag_mode_proba_2_models(self):
727727
728728
729729
730- models = [LogisticRegression (random_state = 0 ),
730+ models = [LogisticRegression (random_state = 0 , solver = 'liblinear' , multi_class = 'ovr' ),
731731 GaussianNB ()]
732732 S_train_2 , S_test_2 = stacking (models , X_train , y_train , X_test ,
733733 regression = False , n_folds = n_folds , shuffle = False , save_dir = temp_dir ,
0 commit comments