Skip to content

Commit f792c69

Browse files
authored
Merge pull request #1784 from vespa-engine/laura/fix-sample-app-json
Fix deployment of sample apps to not use dry run on master
2 parents 53f117b + 1cad1b5 commit f792c69

File tree

2 files changed

+56
-56
lines changed

2 files changed

+56
-56
lines changed

.github/workflows/update-cloud-samples.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@ jobs:
142142
- name: Push Zip and JSON to S3
143143
env:
144144
# Add `--dryrun` if not on "push" event on default branch.
145-
AWS_S3_OPTIONS: --color=on --no-progress ${{ (github.event_name == 'push' && github.ref_name == 'master' ) && '' || ' --dryrun' }}
145+
AWS_S3_OPTIONS: --color=on --no-progress ${{ github.ref_name == 'master' && '' || ' --dryrun' }}
146146
run: |
147147
# Not an app, but artifact from the setup job.
148148
mv ./apps/console-json ./console-json

console-sample-apps.json

Lines changed: 55 additions & 55 deletions
Original file line numberDiff line numberDiff line change
@@ -1,60 +1,60 @@
11
[
2-
{
3-
"name": "album-recommendation",
4-
"shortname": "album-recommendation",
5-
"title": "Album Recommendation",
6-
"description": "This application ranks music albums using a user profile: Albums with scores for a set of categories are matched with a user's preference.",
7-
"features": [
8-
"Search",
9-
"Recommendation"
10-
],
11-
"category": "Getting Started",
12-
"repository": "https://github.com/vespa-engine/sample-apps/tree/master/album-recommendation#readme",
13-
"exampleQuery": {
14-
"yql": "select * from music where true",
15-
"ranking": {
16-
"profile": "rank_albums",
17-
"features": {
18-
"query(user_profile)": "{{cat:pop}:0.8,{cat:rock}:0.2,{cat:jazz}:0.1}"
19-
}
2+
{
3+
"name": "album-recommendation",
4+
"shortname": "album-recommendation",
5+
"title": "Album Recommendation",
6+
"description": "This application ranks music albums using a user profile: Albums with scores for a set of categories are matched with a user's preference.",
7+
"features": [
8+
"Search",
9+
"Recommendation"
10+
],
11+
"category": "Getting Started",
12+
"repository": "https://github.com/vespa-engine/sample-apps/tree/master/album-recommendation#readme",
13+
"exampleQuery": {
14+
"yql": "select * from music where true",
15+
"ranking": {
16+
"profile": "rank_albums",
17+
"features": {
18+
"query(user_profile)": "{{cat:pop}:0.8,{cat:rock}:0.2,{cat:jazz}:0.1}"
2019
}
2120
}
22-
},
23-
{
24-
"name": "text-search",
25-
"shortname": "text-search",
26-
"title": "Text Search",
27-
"description": "The Text Search Tutorial demonstrates traditional text search using BM25/Vespa nativeRank, and is a good start to using the MS Marco dataset.",
28-
"features": [
29-
"BM25",
30-
"nativeRank",
31-
"MS Marco"
32-
],
33-
"category": "Getting Started",
34-
"repository": "https://github.com/vespa-engine/sample-apps/tree/master/text-search#readme",
35-
"exampleQuery": {
36-
"yql": "select title,url,id from msmarco where userQuery()",
37-
"query": "what is dad bod"
38-
}
39-
},
40-
{
41-
"name": "colbert",
42-
"shortname": "colbert",
43-
"title": "Simple hybrid search with ColBERT",
44-
"description": "This application uses a single vector embedding model for retrieval and ColBERT (multi-token vector representation) for re-ranking. This semantic search application demonstrates the colbert-embedder and the tensor expressions for ColBERT MaxSim.",
45-
"features": [
46-
"ColBERT",
47-
"Re-ranking"
48-
],
49-
"category": "Ranking",
50-
"repository": "https://github.com/vespa-engine/sample-apps/tree/master/colbert#readme",
51-
"exampleQuery": {
52-
"query": "shipping stuff over the sea",
53-
"yql": "select * from doc where userQuery() or ({targetHits: 100}nearestNeighbor(embedding, q))",
54-
"input": {
55-
"query(q)": "embed(e5, @query)",
56-
"query(qt)": "embed(colbert, @query)"
57-
}
21+
}
22+
},
23+
{
24+
"name": "text-search",
25+
"shortname": "text-search",
26+
"title": "Text Search",
27+
"description": "The Text Search Tutorial demonstrates traditional text search using BM25/Vespa nativeRank, and is a good start to using the MS Marco dataset.",
28+
"features": [
29+
"BM25",
30+
"nativeRank",
31+
"MS Marco"
32+
],
33+
"category": "Getting Started",
34+
"repository": "https://github.com/vespa-engine/sample-apps/tree/master/text-search#readme",
35+
"exampleQuery": {
36+
"yql": "select title,url,id from msmarco where userQuery()",
37+
"query": "what is dad bod"
38+
}
39+
},
40+
{
41+
"name": "colbert",
42+
"shortname": "colbert",
43+
"title": "Simple hybrid search with ColBERT",
44+
"description": "This application uses a single vector embedding model for retrieval and ColBERT (multi-token vector representation) for re-ranking. This semantic search application demonstrates the colbert-embedder and the tensor expressions for ColBERT MaxSim.",
45+
"features": [
46+
"ColBERT",
47+
"Re-ranking"
48+
],
49+
"category": "Ranking",
50+
"repository": "https://github.com/vespa-engine/sample-apps/tree/master/colbert#readme",
51+
"exampleQuery": {
52+
"query": "shipping stuff over the sea",
53+
"yql": "select * from doc where userQuery() or ({targetHits: 100}nearestNeighbor(embedding, q))",
54+
"input": {
55+
"query(q)": "embed(e5, @query)",
56+
"query(qt)": "embed(colbert, @query)"
5857
}
5958
}
60-
]
59+
}
60+
]

0 commit comments

Comments
 (0)