@@ -8,20 +8,20 @@ From the authors of [GraphLab](https://github.com/jegonzal/PowerGraph) and [Turi
88![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/mscoco_duplicates-min.png )
99* Duplicates and near duplicates identified in [ MS-COCO] ( https://cocodataset.org/#home ) and [ Imagenet-21K] ( https://www.image-net.org ) dataset*
1010
11+ ![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/daisy.png )
12+ * Cluster of wrong labels in the [ Imagenet-21K] ( https://www.image-net.org ) dataset.* Different labels to visually similar red-wine images.
13+
1114![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/imdb_outliers-min.png )
1215* [ IMDB-WIKI] ( https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/ ) outliers (data goal is for face detection, gender and age detection)*
1316
1417![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/landmark_outliers-min.png )
1518* Outliers in the [ Google Landmark Recognition 2021 dataset] ( https://www.kaggle.com/competitions/landmark-recognition-2021 ) (dataset intention is to capture recognizable landmarks, like the empire state building etc.)*
1619
17- ![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/red_wine.png )
18- * Cluster of wrong labels in the [ Imagenet-21K] ( https://www.image-net.org ) dataset. No human can tell those red wine flavors from their image.*
19-
2020![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/imagenet21k_wrong_labels-min.png )
2121* Wrong labels in the [ Imagenet-21K] ( https://www.image-net.org ) dataset* Different labels to visaully similar daisy flower images.
2222
23- ![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/daisy .png )
24- * Cluster of wrong labels in the [ Imagenet-21K] ( https://www.image-net.org ) dataset.* Different labels to visually similar red- wine images.
23+ ![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/red_wine .png )
24+ * Cluster of wrong labels in the [ Imagenet-21K] ( https://www.image-net.org ) dataset. No human can tell those red wine flavors from their image. *
2525
2626![ alt text] ( https://github.com/visualdatabase/fastdup/blob/main/gallery/imagenet21k_funny-min.png )
2727* Fun labels in the [ Imagenet-21K] ( https://www.image-net.org ) dataset*
0 commit comments