You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
<ahref="https://colab.research.google.com/github/visualdatabase/fastdup/blob/main/examples/fastdup.ipynb"><imgsrc="https://colab.research.google.com/assets/colab-badge.svg"alt="Open In Colab"></a>
4
5
<ahref="https://www.kaggle.com/graphlab/fastdup"rel="nofollow"><imgsrc="https://camo.githubusercontent.com/a08ca511178e691ace596a95d334f73cf4ce06e83a5c4a5169b8bb68cac27bef/68747470733a2f2f6b6167676c652e636f6d2f7374617469632f696d616765732f6f70656e2d696e2d6b6167676c652e737667"alt="Open In Kaggle"data-canonical-src="https://kaggle.com/static/images/open-in-kaggle.svg"style="max-width: 100%;"></a>
@@ -76,10 +77,11 @@ We have thoroughly tested fastdup across various famous visual datasets. Ranging
76
77
* We run on the full ImageNet-21K dataset (11.5M images) to compare all pairs of images in less than 3 hours WITHOUT a GPU (with Google cloud cost of 5$).
77
78
78
79
# Quick Installation
79
-
For Python 3.7 and 3.8(Ubuntu 20.04 or Ubuntu 18.04 or Mac M1 or Mac Intel Mojave and up)
80
+
For Python 3.7, 3.8, 3.9 (Ubuntu 20.04 or Ubuntu 18.04 or Debian 10 or Mac M1 or Mac Intel Mojave and up)
*Working on the Food-101 dataset. Detecting identical pairs, similar-pairs (search) and outliers (non-food images..)*
96
98
97
99
## Getting started examples
100
+
-[🔥 Finding duplicates, outliers and connected components in the Food-101 dataset, including Tensorboard Projector visualization - Google Colab](https://bit.ly/3ydvtVJ)
98
101
-[Getting started on a Kaggle dataset](https://bit.ly/3OUqj7u)
99
102
-[Finding duplicates, outliers in the Food-101 datadset:](https://bit.ly/3yhoafo)
100
-
-[🔥 Finding duplicates, outliers and connected components in the Food-101 dataset, including Tensorboard Projector visualization - Google Colab](https://bit.ly/3ydvtVJ)
101
-
-[🔥Analyzing video of the MEVA dataset - Google Colab](https://bit.ly/3yE29ZW)
103
+
-[Analyzing video of the MEVA dataset - Google Colab](https://bit.ly/3yE29ZW)
102
104
-[Kaggle notebook - visualizing the pistachio dataset](https://bit.ly/3ygkg6C)
103
105
104
106

0 commit comments