Skip to content

Commit e93b3c3

Browse files
authored
cleaning image
1 parent 44e1600 commit e93b3c3

File tree

2 files changed

+52
-2
lines changed

2 files changed

+52
-2
lines changed

.github/workflows/examples-ci.yml

Lines changed: 40 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -29,14 +29,13 @@ jobs:
2929
- name: Install dependencies
3030
run: |
3131
python -m pip install --upgrade pip
32-
pip install fastdup matplotlib==3.6.3
32+
pip install fastdup matplotlib
3333
3434
- name: Download dataset
3535
run: |
3636
wget "https://thor.robots.ox.ac.uk/~vgg/data/pets/images.tar.gz" -O "images.tar.gz"
3737
tar xf "images.tar.gz"
3838
39-
4039
- name: Run example
4140
run: |
4241
python .github/workflows/tests/quick_dataset_analysis.py
@@ -46,3 +45,42 @@ jobs:
4645
with:
4746
name: fastdup_work_dir
4847
path: fastdup_work_dir/
48+
49+
test-cleaning-image-dtaset:
50+
runs-on: ${{ matrix.os }}
51+
env:
52+
SENTRY_OPT_OUT: True
53+
strategy:
54+
matrix:
55+
os: [ubuntu-latest]
56+
python-version: ['3.9']
57+
steps:
58+
- name: Checkout repository
59+
uses: actions/checkout@v3
60+
with:
61+
fetch-depth: 0
62+
63+
- name: Set up Python
64+
uses: actions/setup-python@v3
65+
with:
66+
python-version: ${{ matrix.python-version }}
67+
68+
- name: Install dependencies
69+
run: |
70+
python -m pip install --upgrade pip
71+
pip install fastdup matplotlib
72+
73+
- name: Download dataset
74+
run: |
75+
wget http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz
76+
tar -xf food-101.tar.gz
77+
78+
- name: Run example
79+
run: |
80+
python .github/workflows/tests/cleaning_image_dataset.py
81+
82+
- name: Save artifacts
83+
uses: actions/upload-artifact@v3
84+
with:
85+
name: fastdup_work_dir
86+
path: fastdup_work_dir/
Lines changed: 12 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,12 @@
1+
import fastdup
2+
print(f'fastdup version: {fastdup.__version__}')
3+
4+
fd = fastdup.create(work_dir="fastdup_work_dir/", input_dir="food-101/images/")
5+
fd.run(num_images=1000)
6+
7+
fd.vis.duplicates_gallery(num_images=5)
8+
fd.vis.component_gallery(num_images=5)
9+
fd.vis.outliers_gallery(num_images=5)
10+
fd.vis.stats_gallery(metric='dark', num_images=5)
11+
fd.vis.stats_gallery(metric='bright', num_images=5)
12+
fd.vis.stats_gallery(metric='blur', num_images=5)

0 commit comments

Comments
 (0)