Skip to content

Commit c2d422b

Browse files
authored
Add files via upload
1 parent c28ff1e commit c2d422b

File tree

2 files changed

+23
-24
lines changed

2 files changed

+23
-24
lines changed

README.Rmd

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
---
22
title: "cppRouting package"
33
author: "Vincent LARMET"
4-
date: "15 juin 2019"
4+
date: "July 6, 2019"
55
output: github_document
66
---
77

@@ -350,7 +350,7 @@ The shortest travel time is computed with the `cppRouting` function `get_distanc
350350
In order to compute multiple distances from one source, original uni-directional Dijkstra algorithm is ran without early stopping.
351351
We compute travel time from all commune nodes to all maternity ward nodes (e.g ~36000*400 distances).
352352
```{r,echo=TRUE,message=FALSE,warning=FALSE,include=TRUE}
353-
#Distance matrix (around 10 minutes to compute)
353+
#Distance matrix (few seconds to compute)
354354
dists<-get_distance_matrix(graph,
355355
from=ndcom$id_noeud,
356356
to=ndcom$id_noeud[ndcom$com %in% maternity$CODGEO],

README.md

Lines changed: 21 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
cppRouting package
22
================
33
Vincent LARMET
4-
15 juin 2019
4+
July 6, 2019
55

66
Package presentation
77
====================
@@ -148,7 +148,7 @@ pair_dijkstra<-get_distance_pair(graph,origin,destination)
148148
## Running Dijkstra ...
149149

150150
## user system elapsed
151-
## 58.87 0.74 59.86
151+
## 58.47 0.77 59.52
152152

153153
#### Using bi-directional Dijkstra algorithm
154154

@@ -162,7 +162,7 @@ pair_bidijkstra<-get_distance_pair(graph,origin,destination,algorithm = "bi")
162162
## Running bidirectional Dijkstra...
163163

164164
## user system elapsed
165-
## 39.92 1.40 41.75
165+
## 37.04 1.42 38.50
166166

167167
#### Using A\* algorithm
168168

@@ -178,7 +178,7 @@ pair_astar<-get_distance_pair(graph,origin,destination,algorithm = "A*",constant
178178
## Running A* ...
179179

180180
## user system elapsed
181-
## 32.85 1.93 34.87
181+
## 31.64 1.95 33.65
182182

183183
#### Using NBA\* algorithm
184184

@@ -192,7 +192,7 @@ pair_nba<-get_distance_pair(graph,origin,destination,algorithm = "NBA",constant
192192
## Running NBA* ...
193193

194194
## user system elapsed
195-
## 18.34 2.97 21.32
195+
## 17.89 2.88 20.82
196196

197197
#### Output
198198

@@ -201,12 +201,12 @@ head(cbind(pair_dijkstra,pair_bidijkstra,pair_astar,pair_nba))
201201
```
202202

203203
## pair_dijkstra pair_bidijkstra pair_astar pair_nba
204-
## [1,] 370.2267 370.2267 370.2267 370.2267
205-
## [2,] 173.4823 173.4823 173.4823 173.4823
206-
## [3,] 609.7753 609.7753 609.7753 609.7753
207-
## [4,] 460.4252 460.4252 460.4252 460.4252
208-
## [5,] 407.5842 407.5842 407.5842 407.5842
209-
## [6,] 320.0234 320.0234 320.0234 320.0234
204+
## [1,] 822.8825 822.8825 822.8825 822.8825
205+
## [2,] 255.7911 255.7911 255.7911 255.7911
206+
## [3,] 410.9381 410.9381 410.9381 410.9381
207+
## [4,] 613.2455 613.2455 613.2455 613.2455
208+
## [5,] 327.6106 327.6106 327.6106 327.6106
209+
## [6,] 357.9866 357.9866 357.9866 357.9866
210210

211211
##### In `get_distance_pair` function, all the algorithms can be ran in parallel by setting TRUE to allcores argument.
212212

@@ -338,7 +338,7 @@ system.time(
338338
```
339339

340340
## user system elapsed
341-
## 14.81 1.37 16.24
341+
## 14.77 0.97 15.79
342342

343343
##### Compare outputs
344344

@@ -347,7 +347,7 @@ summary(pair_nba-pair_nba_2)
347347
```
348348

349349
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
350-
## 0 0 0 0 0 0 35
350+
## 0 0 0 0 0 0 42
351351

352352
#### Running time
353353

@@ -475,7 +475,6 @@ OSM
475475
</tr>
476476
</tbody>
477477
</table>
478-
479478
Applications
480479
============
481480

@@ -552,7 +551,7 @@ The shortest travel time is computed with the `cppRouting` function `get_distanc
552551
We compute travel time from all commune nodes to all maternity ward nodes (e.g ~36000\*400 distances).
553552

554553
``` r
555-
#Distance matrix (around 10 minutes to compute)
554+
#Distance matrix (few seconds to compute)
556555
dists<-get_distance_matrix(graph,
557556
from=ndcom$id_noeud,
558557
to=ndcom$id_noeud[ndcom$com %in% maternity$CODGEO],
@@ -605,7 +604,7 @@ system.time(
605604
```
606605

607606
## user system elapsed
608-
## 89.63 0.02 89.83
607+
## 88.33 0.03 88.55
609608

610609
``` r
611610
#dodgr
@@ -626,7 +625,7 @@ test_dodgr<-dodgr_dists(graph=data.frame(roads2),from=origin,to=destination,para
626625
```
627626

628627
## user system elapsed
629-
## 90.09 0.09 90.78
628+
## 87.47 0.02 87.70
630629

631630
``` r
632631
#cppRouting
@@ -636,7 +635,7 @@ test_cpp<-get_distance_matrix(graph,origin,destination,allcores = FALSE)
636635
```
637636

638637
## user system elapsed
639-
## 62.66 0.40 63.48
638+
## 59.32 0.42 59.80
640639

641640
#### Ouput
642641

@@ -662,7 +661,7 @@ test_dodgr<-dodgr_dists(graph=data.frame(roads2),from=origin,to=destination,para
662661
```
663662

664663
## user system elapsed
665-
## 134.15 0.42 36.97
664+
## 126.10 0.59 33.43
666665

667666
``` r
668667
#cppRouting
@@ -672,7 +671,7 @@ test_cpp<-get_distance_matrix(graph,origin,destination,allcores = TRUE)
672671
```
673672

674673
## user system elapsed
675-
## 0.11 0.08 23.82
674+
## 0.14 0.05 22.36
676675

677676
Benchmark on computing shortest paths by pairs
678677
----------------------------------------------
@@ -688,7 +687,7 @@ test_dodgr<-dodgr_paths(graph=data.frame(roads2),from=origin,to=destination,pair
688687
```
689688

690689
## user system elapsed
691-
## 561.26 20.80 587.54
690+
## 531.79 18.66 551.76
692691

693692
``` r
694693
#cppRouting
@@ -700,7 +699,7 @@ test_cpp<-get_path_pair(graph,origin,destination,algorithm = "NBA",constant=110/
700699
## Running NBA* ...
701700

702701
## user system elapsed
703-
## 5.24 0.31 5.56
702+
## 4.93 0.36 5.29
704703

705704
### Test similarity of the first travel
706705

0 commit comments

Comments
 (0)