|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +sanic_server.py |
| 4 | +
|
| 5 | +Simple Sanic-based mock server that implements common OpenAI / vLLM-compatible routes: |
| 6 | +- GET / : health |
| 7 | +- GET /v1/models : list models |
| 8 | +- POST /v1/chat/completions : chat completions (supports streaming via ?stream=true) |
| 9 | +- POST /v1/completions : classic completions |
| 10 | +- POST /v1/embeddings : fake embeddings |
| 11 | +- POST /v1/moderations : fake moderation |
| 12 | +
|
| 13 | +Usage: |
| 14 | + pip install sanic==25.3.0 or latest |
| 15 | +Command: |
| 16 | + python sanic_server.py or \ |
| 17 | + python sanic_server.py --host=0.0.0.0 --port=8000 --workers=1 --debug |
| 18 | +""" |
| 19 | + |
| 20 | +import argparse |
| 21 | +import asyncio |
| 22 | +import json |
| 23 | +import random |
| 24 | + |
| 25 | +from sanic import Sanic |
| 26 | +from sanic.request import Request |
| 27 | +from sanic.response import ResponseStream |
| 28 | +from sanic.response import json as sjson |
| 29 | + |
| 30 | +app = Sanic("sanic_server") |
| 31 | + |
| 32 | + |
| 33 | +# ---------- utils ---------- |
| 34 | + |
| 35 | + |
| 36 | +def fake_tokenize(text: str) -> list[str]: |
| 37 | + # crude whitespace tokenizer for token counting |
| 38 | + return text.strip().split() |
| 39 | + |
| 40 | + |
| 41 | +def make_choice_text(prompt: str) -> str: |
| 42 | + # Very simple deterministic reply generator |
| 43 | + # Echo some truncated summary for testing |
| 44 | + tail = prompt.strip()[:120] |
| 45 | + return f"Mock reply summarizing: {tail}" |
| 46 | + |
| 47 | + |
| 48 | +def now_ms() -> int: |
| 49 | + return int(asyncio.get_event_loop().time() * 1000) |
| 50 | + |
| 51 | + |
| 52 | +# ---------- routes ---------- |
| 53 | + |
| 54 | + |
| 55 | +@app.get("/") |
| 56 | +async def health(request: Request): |
| 57 | + return sjson({"ok": True, "msg": "mock openai/vllm server"}) |
| 58 | + |
| 59 | + |
| 60 | +@app.get("/v1/models") |
| 61 | +async def list_models(request: Request): |
| 62 | + # minimal model list |
| 63 | + models = [ |
| 64 | + {"id": "mock-qwen-2.5", "object": "model", "owned_by": "mock"}, |
| 65 | + {"id": "facebook/opt-125m", "object": "model", "owned_by": "mock"}, |
| 66 | + ] |
| 67 | + return sjson({"object": "list", "data": models}) |
| 68 | + |
| 69 | + |
| 70 | +@app.post("/v1/chat/completions") |
| 71 | +async def chat_completions(request: Request): |
| 72 | + """ |
| 73 | + Supports: |
| 74 | + - JSON body with 'messages' (OpenAI format) |
| 75 | + - query param stream=true or JSON {'stream': true} |
| 76 | + => responds with text/event-stream chunks containing 'data: {json}\n\n' |
| 77 | + """ |
| 78 | + body = request.json or {} |
| 79 | + stream_mode = False |
| 80 | + if request.args.get("stream", "false").lower() == "true": |
| 81 | + stream_mode = True |
| 82 | + if isinstance(body.get("stream"), bool): |
| 83 | + stream_mode = body.get("stream") |
| 84 | + |
| 85 | + messages = body.get("messages", []) |
| 86 | + prompt_text = "" |
| 87 | + if isinstance(messages, list) and messages: |
| 88 | + # approximate prompt as concatenation of last user message(s) |
| 89 | + for m in messages: |
| 90 | + role = m.get("role", "") |
| 91 | + content = m.get("content", "") |
| 92 | + if role == "user": |
| 93 | + prompt_text += content + " " |
| 94 | + |
| 95 | + # build a deterministic reply |
| 96 | + reply = make_choice_text(prompt_text or "hello") |
| 97 | + prompt_tokens = len(fake_tokenize(prompt_text)) |
| 98 | + completion_tokens = len(fake_tokenize(reply)) |
| 99 | + |
| 100 | + # create response object (non-streaming) |
| 101 | + def make_response_obj(): |
| 102 | + return { |
| 103 | + "id": f"cmpl-mock-{random.randint(1000, 9999)}", |
| 104 | + "object": "chat.completion", |
| 105 | + "created": now_ms(), |
| 106 | + "model": body.get("model", "mock-qwen-2.5"), |
| 107 | + "usage": { |
| 108 | + "prompt_tokens": prompt_tokens, |
| 109 | + "completion_tokens": completion_tokens, |
| 110 | + "total_tokens": prompt_tokens + completion_tokens, |
| 111 | + }, |
| 112 | + "choices": [ |
| 113 | + { |
| 114 | + "index": 0, |
| 115 | + "message": {"role": "assistant", "content": reply}, |
| 116 | + "finish_reason": "stop", |
| 117 | + } |
| 118 | + ], |
| 119 | + } |
| 120 | + |
| 121 | + if not stream_mode: |
| 122 | + return sjson(make_response_obj()) |
| 123 | + |
| 124 | + # streaming mode: SSE-style chunks with 'data: <json>\n\n' |
| 125 | + async def streaming_fn(resp): |
| 126 | + # send an initial "response.start" like chunk |
| 127 | + await resp.write( |
| 128 | + f"data: \ |
| 129 | + {json.dumps({'type': 'response.start', 'created': now_ms()})}\n\n" |
| 130 | + ) |
| 131 | + |
| 132 | + # simulate token-by-token streaming |
| 133 | + tokens = fake_tokenize(reply) |
| 134 | + chunk_text = "" |
| 135 | + for i, tk in enumerate(tokens): |
| 136 | + chunk_text += tk + (" " if i < len(tokens) - 1 else "") |
| 137 | + chunk_payload = { |
| 138 | + "id": f"cmpl-mock-{random.randint(1000, 9999)}", |
| 139 | + "object": "chat.completion.chunk", |
| 140 | + "created": now_ms(), |
| 141 | + "model": body.get("model", "mock-qwen-2.5"), |
| 142 | + "choices": [ |
| 143 | + { |
| 144 | + "delta": {"content": tk + (" " if i < len(tokens) - 1 else "")}, |
| 145 | + "index": 0, |
| 146 | + "finish_reason": None, |
| 147 | + } |
| 148 | + ], |
| 149 | + } |
| 150 | + # write chunk |
| 151 | + await resp.write(f"data: {json.dumps(chunk_payload)}\n\n") |
| 152 | + # small jitter between tokens |
| 153 | + await asyncio.sleep(0.03) |
| 154 | + # final done event |
| 155 | + done_payload = {"type": "response.done", "created": now_ms()} |
| 156 | + await resp.write(f"data: {json.dumps(done_payload)}\n\n") |
| 157 | + |
| 158 | + headers = {"Content-Type": "text/event-stream", "Cache-Control": "no-cache"} |
| 159 | + return ResponseStream(streaming_fn, headers=headers) |
| 160 | + |
| 161 | + |
| 162 | +@app.post("/v1/completions") |
| 163 | +async def completions(request: Request): |
| 164 | + body = request.json or {} |
| 165 | + prompt = body.get("prompt") or ( |
| 166 | + body.get("messages") |
| 167 | + and " ".join([m.get("content", "") for m in body.get("messages", [])]) |
| 168 | + ) |
| 169 | + if not prompt: |
| 170 | + prompt = "hello" |
| 171 | + # optional max_tokens |
| 172 | + max_tokens = int(body.get("max_tokens", 64)) |
| 173 | + reply = make_choice_text(prompt) |
| 174 | + tokenized = fake_tokenize(reply)[:max_tokens] |
| 175 | + text_out = " ".join(tokenized) |
| 176 | + |
| 177 | + prompt_tokens = len(fake_tokenize(prompt)) |
| 178 | + completion_tokens = len(tokenized) |
| 179 | + |
| 180 | + resp = { |
| 181 | + "id": f"cmpl-mock-{random.randint(1000, 9999)}", |
| 182 | + "object": "text_completion", |
| 183 | + "created": now_ms(), |
| 184 | + "model": body.get("model", "mock-qwen-2.5"), |
| 185 | + "choices": [{"text": text_out, "index": 0, "finish_reason": "stop"}], |
| 186 | + "usage": { |
| 187 | + "prompt_tokens": prompt_tokens, |
| 188 | + "completion_tokens": completion_tokens, |
| 189 | + "total_tokens": prompt_tokens + completion_tokens, |
| 190 | + }, |
| 191 | + } |
| 192 | + # simulate a small server-side latency |
| 193 | + await asyncio.sleep(0.01) |
| 194 | + return sjson(resp) |
| 195 | + |
| 196 | + |
| 197 | +@app.post("/v1/embeddings") |
| 198 | +async def embeddings(request: Request): |
| 199 | + body = request.json or {} |
| 200 | + inputs = body.get("input") or body.get("inputs") or [] |
| 201 | + if isinstance(inputs, str): |
| 202 | + inputs = [inputs] |
| 203 | + # produce deterministic embedding length 16 |
| 204 | + dim = int(request.args.get("dim", body.get("dim", 16))) |
| 205 | + out = [] |
| 206 | + for i, txt in enumerate(inputs): |
| 207 | + # make pseudo-random but deterministic numbers based on hash |
| 208 | + seed = abs(hash(txt)) % (10**8) |
| 209 | + random.seed(seed) |
| 210 | + vec = [round((random.random() - 0.5), 6) for _ in range(dim)] |
| 211 | + out.append({"object": "embedding", "embedding": vec, "index": i}) |
| 212 | + return sjson({"data": out, "model": body.get("model", "mock-embed-1")}) |
| 213 | + |
| 214 | + |
| 215 | +@app.post("/v1/moderations") |
| 216 | +async def moderations(request: Request): |
| 217 | + body = request.json or {} |
| 218 | + input_text = body.get("input") or "" |
| 219 | + # super naive: classify as 'flagged' if contains "bad" |
| 220 | + flagged = "bad" in input_text.lower() |
| 221 | + return sjson( |
| 222 | + { |
| 223 | + "id": "mod-mock-1", |
| 224 | + "model": body.get("model", "mock-moderation"), |
| 225 | + "results": [{"flagged": flagged}], |
| 226 | + } |
| 227 | + ) |
| 228 | + |
| 229 | + |
| 230 | +if __name__ == "__main__": |
| 231 | + parser = argparse.ArgumentParser(prog="sanic_server") |
| 232 | + parser.add_argument("--host", default="127.0.0.1") |
| 233 | + parser.add_argument("--port", default=8000, type=int) |
| 234 | + parser.add_argument("--debug", action="store_true") |
| 235 | + parser.add_argument("--workers", default=1, type=int) |
| 236 | + args = parser.parse_args() |
| 237 | + |
| 238 | + app.run( |
| 239 | + host=args.host, |
| 240 | + port=args.port, |
| 241 | + debug=args.debug, |
| 242 | + workers=args.workers, |
| 243 | + access_log=False, |
| 244 | + ) |
0 commit comments