You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
## Summary
Added Red Hat Developer blog link about Axolotl and LLM Compressor
integration to the What's New section.
---------
Signed-off-by: Rahul Tuli <[email protected]>
Co-authored-by: Claude <[email protected]>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Dipika Sikka <[email protected]>
Copy file name to clipboardExpand all lines: README.md
+1-1Lines changed: 1 addition & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -17,7 +17,7 @@
17
17
Big updates have landed in LLM Compressor! Check out these exciting new features:
18
18
19
19
***Preliminary FP4 Quantization Support:** Quantize weights and activations to FP4 and seamlessly run the compressed model in vLLM. Model weights and activations are quantized following the NVFP4 [configuration](https://github.com/neuralmagic/compressed-tensors/blob/f5dbfc336b9c9c361b9fe7ae085d5cb0673e56eb/src/compressed_tensors/quantization/quant_scheme.py#L104). See examples of [weight-only quantization](examples/quantization_w4a16_fp4/llama3_example.py) and [fp4 activation support](examples/quantization_w4a4_fp4/llama3_example.py). Support is currently preliminary and additional support will be added for MoEs.
20
-
***Axolotl Sparse Finetuning Integration:**Easily finetune sparse LLMs through our seamless integrationwith Axolotl. [Learn more here](https://docs.axolotl.ai/docs/custom_integrations.html#llmcompressor).
20
+
***Axolotl Sparse Finetuning Integration:**Seamlessly finetune sparse LLMs with our Axolotl integration. Learn how to create [fast sparse open-source models with Axolotl and LLM Compressor](https://developers.redhat.com/articles/2025/06/17/axolotl-meets-llm-compressor-fast-sparse-open). See also the [Axolotl integration docs](https://docs.axolotl.ai/docs/custom_integrations.html#llmcompressor).
21
21
***AutoAWQ Integration:** Perform low-bit weight-only quantization efficiently using AutoAWQ, now part of LLM Compressor. *Note: This integration should be considered experimental for now. Enhanced support, including for MoE models and improved handling of larger models via layer sequential pipelining, is planned for upcoming releases.*[See the details](https://github.com/vllm-project/llm-compressor/pull/1177).
22
22
***Day 0 Llama 4 Support:** Meta utilized LLM Compressor to create the [FP8-quantized Llama-4-Maverick-17B-128E](https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8), optimized for vLLM inference using [compressed-tensors](https://github.com/neuralmagic/compressed-tensors) format.
0 commit comments