|
| 1 | +import torch |
| 2 | +from datasets import load_dataset |
| 3 | +from transformers import AutoTokenizer |
| 4 | + |
| 5 | +from llmcompressor.modifiers.quantization import GPTQModifier |
| 6 | +from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot |
| 7 | +from llmcompressor.transformers.compression.helpers import calculate_offload_device_map |
| 8 | + |
| 9 | +# select a Mixture of Experts model for quantization |
| 10 | +MODEL_ID = "deepseek-ai/DeepSeek-V2.5" |
| 11 | + |
| 12 | +# adjust based off number of desired GPUs |
| 13 | +# if not enough memory is available, some layers will automatically be offlaoded to cpu |
| 14 | +device_map = calculate_offload_device_map( |
| 15 | + MODEL_ID, |
| 16 | + reserve_for_hessians=True, |
| 17 | + num_gpus=2, |
| 18 | + torch_dtype=torch.bfloat16, |
| 19 | + trust_remote_code=True, |
| 20 | +) |
| 21 | + |
| 22 | +model = SparseAutoModelForCausalLM.from_pretrained( |
| 23 | + MODEL_ID, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True |
| 24 | +) |
| 25 | +tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
| 26 | + |
| 27 | +# Select calibration dataset. |
| 28 | +DATASET_ID = "HuggingFaceH4/ultrachat_200k" |
| 29 | +DATASET_SPLIT = "train_sft" |
| 30 | +NUM_CALIBRATION_SAMPLES = 512 |
| 31 | +MAX_SEQUENCE_LENGTH = 2048 |
| 32 | + |
| 33 | + |
| 34 | +# Load dataset and preprocess. |
| 35 | +ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) |
| 36 | +ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) |
| 37 | + |
| 38 | + |
| 39 | +def preprocess(example): |
| 40 | + return { |
| 41 | + "text": tokenizer.apply_chat_template( |
| 42 | + example["messages"], |
| 43 | + tokenize=False, |
| 44 | + ) |
| 45 | + } |
| 46 | + |
| 47 | + |
| 48 | +ds = ds.map(preprocess) |
| 49 | + |
| 50 | + |
| 51 | +# Tokenize inputs. |
| 52 | +def tokenize(sample): |
| 53 | + return tokenizer( |
| 54 | + sample["text"], |
| 55 | + padding=False, |
| 56 | + max_length=MAX_SEQUENCE_LENGTH, |
| 57 | + truncation=True, |
| 58 | + add_special_tokens=False, |
| 59 | + ) |
| 60 | + |
| 61 | + |
| 62 | +ds = ds.map(tokenize, remove_columns=ds.column_names) |
| 63 | + |
| 64 | +# define a llmcompressor recipe for W416 quantization |
| 65 | +# since the MoE gate layers are sensitive to quantization, we add them to the ignore |
| 66 | +# list so they remain at full precision |
| 67 | +recipe = "deepseek_recipe_w4a16.yaml" |
| 68 | + |
| 69 | +SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16" |
| 70 | + |
| 71 | + |
| 72 | +oneshot( |
| 73 | + model=model, |
| 74 | + dataset=ds, |
| 75 | + recipe=recipe, |
| 76 | + max_seq_length=MAX_SEQUENCE_LENGTH, |
| 77 | + num_calibration_samples=NUM_CALIBRATION_SAMPLES, |
| 78 | + save_compressed=True, |
| 79 | + output_dir=SAVE_DIR, |
| 80 | +) |
| 81 | + |
| 82 | +# Confirm generations of the quantized model look sane. |
| 83 | +print("========== SAMPLE GENERATION ==============") |
| 84 | +input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda") |
| 85 | +output = model.generate(input_ids, max_new_tokens=20) |
| 86 | +print(tokenizer.decode(output[0])) |
| 87 | +print("==========================================") |
| 88 | + |
| 89 | + |
| 90 | +# Run the model on vLLM |
| 91 | +try: |
| 92 | + from vllm import LLM, SamplingParams |
| 93 | + |
| 94 | + vllm_installed = True |
| 95 | +except ImportError: |
| 96 | + vllm_installed = False |
| 97 | + |
| 98 | +if vllm_installed: |
| 99 | + print("vLLM installed, running using vLLM") |
| 100 | + sampling_params = SamplingParams(temperature=0.80, top_p=0.95) |
| 101 | + llm = LLM( |
| 102 | + model=SAVE_DIR, |
| 103 | + tensor_parallel_size=2, |
| 104 | + trust_remote_code=True, |
| 105 | + max_model_len=1042, |
| 106 | + dtype=torch.half, |
| 107 | + ) |
| 108 | + prompts = [ |
| 109 | + "The capital of France is", |
| 110 | + "The president of the US is", |
| 111 | + "My name is", |
| 112 | + ] |
| 113 | + |
| 114 | + outputs = llm.generate(prompts, sampling_params) |
| 115 | + print("================= vLLM GENERATION ======================") |
| 116 | + for output in outputs: |
| 117 | + assert output |
| 118 | + prompt = output.prompt |
| 119 | + generated_text = output.outputs[0].text |
| 120 | + print("PROMPT", prompt) |
| 121 | + print("GENERATED TEXT", generated_text) |
0 commit comments