Skip to content

Commit 66efff5

Browse files
authored
[QuantizationFormat] Remove code inferring format (#1786)
Summary - Removed and moved to compressed-tensors - requires: neuralmagic/compressed-tensors#470 - Fix a bad test - we were setting `resume_from_checkpoint` as True when we're already loading in a model for training
1 parent 44f6b0d commit 66efff5

File tree

5 files changed

+13
-163
lines changed

5 files changed

+13
-163
lines changed

src/llmcompressor/transformers/compression/compressed_tensors_utils.py

Lines changed: 12 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -1,7 +1,7 @@
11
import os
22
import weakref
33
from functools import wraps
4-
from typing import List, Optional
4+
from typing import Optional
55

66
import torch
77
from accelerate.accelerator import get_state_dict_offloaded_model
@@ -12,14 +12,12 @@
1212
has_offloaded_params,
1313
register_offload_parameter,
1414
)
15+
from compressed_tensors.config import CompressionFormat
1516
from loguru import logger
1617
from transformers import PreTrainedModel
1718

1819
from llmcompressor.core import active_session
1920
from llmcompressor.pytorch.model_load.helpers import copy_python_files_from_model_cache
20-
from llmcompressor.transformers.compression.quantization_format import (
21-
infer_and_set_per_module_quantization_format,
22-
)
2321
from llmcompressor.transformers.compression.sparsity_metadata_config import (
2422
SparsityConfigMetadata,
2523
)
@@ -227,20 +225,19 @@ def get_model_compressor(
227225
SparsityConfigMetadata.infer_sparsity_structure(model)
228226
)
229227

230-
quantization_format: Optional[List[str]] = (
231-
infer_and_set_per_module_quantization_format(
232-
model=model,
233-
quantization_format=quantization_format,
234-
save_compressed=save_compressed,
235-
sparsity_structure=None
236-
if sparsity_config is None
237-
else sparsity_config.sparsity_structure,
238-
)
239-
)
228+
if not save_compressed:
229+
if quantization_format not in (None, CompressionFormat.dense.value):
230+
raise ValueError(
231+
"A quantizatiom format was provided but "
232+
"save_compressed is set to False. "
233+
"A compression format can only be applied when "
234+
"saving the model compressed"
235+
)
236+
quantization_format = CompressionFormat.dense.value
240237

241238
return ModelCompressor.from_pretrained_model(
242239
model,
243-
sparsity_config=sparsity_config,
240+
sparsity_config_or_format=sparsity_config,
244241
quantization_format=quantization_format,
245242
)
246243

src/llmcompressor/transformers/compression/quantization_format.py

Lines changed: 0 additions & 114 deletions
This file was deleted.

tests/llmcompressor/transformers/compression/test_compress_tensor_utils.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -370,7 +370,7 @@ def test_compressor_stacking(model_stub, recipe, sparse_format, quant_format, tm
370370
# As HFQuantizer doesn't decompress the model, use the compressor to decompress
371371
# the model instead
372372
compressor = ModelCompressor.from_pretrained_model(
373-
model, sparsity_config=sparse_format, quantization_format=quant_format
373+
model, sparsity_config_or_format=sparse_format, quantization_format=quant_format
374374
)
375375

376376
assert (

tests/llmcompressor/transformers/compression/test_infer_quant_format.py

Lines changed: 0 additions & 31 deletions
This file was deleted.

tests/llmcompressor/transformers/finetune/test_oneshot_then_finetune.py

Lines changed: 0 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,6 @@ def test_oneshot_sparsification_then_finetune(tmp_path):
9292
concatenate_data=concatenate_data,
9393
splits=splits,
9494
recipe=recipe,
95-
resume_from_checkpoint=True, # use last checkpoint
9695
)
9796

9897

@@ -158,5 +157,4 @@ def test_oneshot_quantization_then_finetune(tmp_path):
158157
concatenate_data=concatenate_data,
159158
splits=splits,
160159
num_train_epochs=0.05,
161-
resume_from_checkpoint=True, # use last checkpoint
162160
)

0 commit comments

Comments
 (0)