|
| 1 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 2 | + |
| 3 | +from llmcompressor import oneshot |
| 4 | +from llmcompressor.modeling import replace_modules_for_calibration |
| 5 | +from llmcompressor.modifiers.quantization import QuantizationModifier |
| 6 | +from llmcompressor.utils import dispatch_for_generation |
| 7 | + |
| 8 | +MODEL_ID = "meta-llama/Llama-4-Scout-17B-16E-Instruct" |
| 9 | + |
| 10 | +# Load model. |
| 11 | +model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto") |
| 12 | +tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) |
| 13 | +model = replace_modules_for_calibration(model) |
| 14 | +# Configure the quantization algorithm and scheme. |
| 15 | +# In this case, we: |
| 16 | +# * quantize the weights to fp8 with block size 128 via ptq |
| 17 | +# * quantize the activations to fp8 with dynamic group activations |
| 18 | +recipe = QuantizationModifier( |
| 19 | + targets="Linear", |
| 20 | + scheme="FP8_BLOCK", |
| 21 | + ignore=[ |
| 22 | + "re:.*lm_head", |
| 23 | + "re:.*self_attn", |
| 24 | + "re:.*router", |
| 25 | + "re:vision_model.*", |
| 26 | + "re:multi_modal_projector.*", |
| 27 | + "Llama4TextAttention", |
| 28 | + ], |
| 29 | +) |
| 30 | + |
| 31 | +# Apply quantization. |
| 32 | +oneshot(model=model, recipe=recipe) |
| 33 | + |
| 34 | +# Confirm generations of the quantized model look sane. |
| 35 | +print("========== SAMPLE GENERATION ==============") |
| 36 | +dispatch_for_generation(model) |
| 37 | +input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to( |
| 38 | + model.device |
| 39 | +) |
| 40 | +output = model.generate(input_ids, max_new_tokens=20) |
| 41 | +print(tokenizer.decode(output[0])) |
| 42 | +print("==========================================") |
| 43 | + |
| 44 | +# Save to disk in compressed-tensors format. |
| 45 | +SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-BLOCK" |
| 46 | +model.save_pretrained(SAVE_DIR) |
| 47 | +tokenizer.save_pretrained(SAVE_DIR) |
0 commit comments