|
| 1 | +# Tutorial: Whisper Transcription API in vLLM Production Stack |
| 2 | + |
| 3 | +## Overview |
| 4 | + |
| 5 | +This tutorial introduces the newly added `/v1/audio/transcriptions` endpoint in the `vllm-router`, enabling users to transcribe `.wav` audio files using OpenAI’s `whisper-small` model. |
| 6 | + |
| 7 | +## Prerequisites |
| 8 | + |
| 9 | +* Access to a machine with a GPU (e.g. via [RunPod](https://runpod.io/)) |
| 10 | +* Python 3.12 environment (recommended with `uv`) |
| 11 | +* `vllm` and `production-stack` cloned and installed |
| 12 | +* `vllm` installed with audio support: |
| 13 | + |
| 14 | + ```bash |
| 15 | + pip install vllm[audio] |
| 16 | + ``` |
| 17 | + |
| 18 | +## 1. Serving the Whisper Model |
| 19 | + |
| 20 | +Start a vLLM backend with the `whisper-small` model: |
| 21 | + |
| 22 | +```bash |
| 23 | +vllm serve \ |
| 24 | + --task transcription openai/whisper-small \ |
| 25 | + --host 0.0.0.0 --port 8002 |
| 26 | +``` |
| 27 | + |
| 28 | +## 2. Running the Router |
| 29 | + |
| 30 | +Create and run a router connected to the Whisper backend: |
| 31 | + |
| 32 | +```bash |
| 33 | +#!/bin/bash |
| 34 | +if [[ $# -ne 2 ]]; then |
| 35 | + echo "Usage: $0 <router_port> <backend_url>" |
| 36 | + exit 1 |
| 37 | +fi |
| 38 | + |
| 39 | +uv run python3 -m vllm_router.app \ |
| 40 | + --host 0.0.0.0 --port "$1" \ |
| 41 | + --service-discovery static \ |
| 42 | + --static-backends "$2" \ |
| 43 | + --static-models "openai/whisper-small" \ |
| 44 | + --static-model-types "transcription" \ |
| 45 | + --routing-logic roundrobin \ |
| 46 | + --log-stats \ |
| 47 | + --engine-stats-interval 10 \ |
| 48 | + --request-stats-window 10 |
| 49 | +``` |
| 50 | + |
| 51 | +Example usage: |
| 52 | + |
| 53 | +```bash |
| 54 | +./run-router.sh 8000 http://localhost:8002 |
| 55 | +``` |
| 56 | + |
| 57 | +## 3. Sending a Transcription Request |
| 58 | + |
| 59 | +Use `curl` to send a `.wav` file to the transcription endpoint: |
| 60 | + |
| 61 | +* You can test with any `.wav` audio file of your choice. |
| 62 | + |
| 63 | +```bash |
| 64 | +curl -v http://localhost:8000/v1/audio/transcriptions \ |
| 65 | + -F 'file=@/path/to/audio.wav;type=audio/wav' \ |
| 66 | + -F 'model=openai/whisper-small' \ |
| 67 | + -F 'response_format=json' \ |
| 68 | + -F 'language=en' |
| 69 | +``` |
| 70 | + |
| 71 | +### Supported Parameters |
| 72 | + |
| 73 | +| Parameter | Description | |
| 74 | +| ----------------- | ------------------------------------------------------ | |
| 75 | +| `file` | Path to a `.wav` audio file | |
| 76 | +| `model` | Whisper model to use (e.g., `openai/whisper-small`) | |
| 77 | +| `prompt` | *(Optional)* Text prompt to guide the transcription | |
| 78 | +| `response_format` | One of `json`, `text`, `srt`, `verbose_json`, or `vtt` | |
| 79 | +| `temperature` | *(Optional)* Sampling temperature as a float | |
| 80 | +| `language` | ISO 639-1 code (e.g., `en`, `fr`, `zh`) | |
| 81 | + |
| 82 | +## 4. Sample Output |
| 83 | + |
| 84 | +```json |
| 85 | +{ |
| 86 | + "text": "Testing testing testing the whisper small model testing testing testing the audio transcription function testing testing testing the whisper small model" |
| 87 | +} |
| 88 | +``` |
| 89 | + |
| 90 | +## 5. Notes |
| 91 | + |
| 92 | +* Router uses extended HTTPX timeouts to support long transcription jobs. |
| 93 | +* This implementation dynamically discovers valid transcription backends and routes requests accordingly. |
| 94 | + |
| 95 | +## 6. Resources |
| 96 | + |
| 97 | +* [PR #469 – Add Whisper Transcription API](https://github.com/vllm-project/production-stack/pull/469) |
| 98 | +* [OpenAI Whisper GitHub](https://github.com/openai/whisper) |
| 99 | +* [Blog: vLLM Whisper Transcription Walkthrough](https://davidgao7.github.io/posts/vllm-v1-whisper-transcription/) |
0 commit comments