@@ -11,12 +11,12 @@ The result is a production-grade LLM serving platform that optimizes for both **
11
11
12
12
** Key Benefits:**
13
13
14
- - ** 3-5x cost reduction** through intelligent model selection combined with infrastructure optimization
15
- - ** 40-60% TTFT improvement** via semantic caching + KV cache management
14
+ - ** Significant cost reduction** through intelligent model selection combined with infrastructure optimization
15
+ - ** Substantial latency improvement** via semantic caching + KV cache management
16
16
- ** Enhanced LLM quality** with domain-aware system prompts that improve Chain-of-Thought reasoning, token efficiency, and MoE expert matching
17
- - ** Adaptive routing latency** with fusion routing: 1-2ms (keyword) to 20-30ms (BERT) based on query complexity
17
+ - ** Adaptive routing latency** with fusion routing: fast path (keyword) to deep analysis (BERT) based on query complexity
18
18
- ** Multi-signal intelligence** combining BERT classification, keyword matching, and similarity search for robust routing decisions
19
- - ** Enhanced security ** with PII detection and jailbreak prevention before inference
19
+ - ** Enhanced content safety ** with PII detection and jailbreak prevention before inference
20
20
- ** Unified observability** across semantic and infrastructure layers
21
21
22
22
---
@@ -117,7 +117,7 @@ Semantic Router implements a **multi-signal fusion routing** approach that combi
117
117
** 1. Keyword-Based Routing (Fast Path)**
118
118
119
119
- Deterministic routing for technology-specific terms (e.g., "kubernetes", "SQL", "React")
120
- - ** Latency** : ~ 1-2ms (10-15x faster than BERT)
120
+ - ** Latency** : Minimal (significantly faster than BERT classification )
121
121
- Boolean logic support (AND/OR operators)
122
122
- Easy to update without model retraining
123
123
- ** Use case** : Exact term matching for known patterns
@@ -127,14 +127,14 @@ Semantic Router implements a **multi-signal fusion routing** approach that combi
127
127
- Embedding similarity for semantic concept detection
128
128
- Robust to paraphrasing ("step-by-step" ≈ "explain thoroughly")
129
129
- Configurable similarity thresholds (default: 0.75)
130
- - ** Latency** : ~ 5-10ms
130
+ - ** Latency** : Low (faster than full BERT classification)
131
131
- ** Use case** : Semantic concept matching beyond exact terms
132
132
133
133
** 3. BERT Classification (Deep Understanding Path)**
134
134
135
135
- 14-category classification with ModernBERT
136
136
- Highest accuracy for complex queries
137
- - ** Latency** : ~ 20-30ms
137
+ - ** Latency** : Moderate (comprehensive analysis)
138
138
- ** Use case** : Comprehensive intent understanding
139
139
140
140
** Signal Fusion Layer:**
@@ -150,7 +150,7 @@ Semantic Router implements a **multi-signal fusion routing** approach that combi
150
150
151
151
** Benefits of Fusion Routing:**
152
152
153
- - ** Latency optimization** : Fast path for common patterns (1-2ms vs 20-30ms)
153
+ - ** Latency optimization** : Fast path for common patterns vs. deep analysis for complex queries
154
154
- ** Accuracy** : Deep understanding for complex queries
155
155
- ** Flexibility** : Easy to add new routing rules without retraining
156
156
- ** Robustness** : Multiple signals reduce misclassification risk
@@ -192,7 +192,7 @@ Enriched Request → [Worker Selection] → KV Cache Optimization → GPU Schedu
192
192
| ** Caching** | ✅ Semantic similarity (Milvus) | ✅ KV cache reuse | ✅✅ ** Dual-layer caching** |
193
193
| ** Security** | ✅ PII + jailbreak | ❌ No security layer | ✅ Pre-inference filtering |
194
194
| ** Cost Optimization** | ✅ Model-level | ✅ Infrastructure-level | ✅✅ ** End-to-end optimization** |
195
- | ** Latency** | ~ 1-30ms (fusion routing) | ~ 5-10ms routing | ** Parallel execution** |
195
+ | ** Latency** | Adaptive (fusion routing) | Low routing overhead | ** Parallel execution** |
196
196
197
197
** Concrete Example:**
198
198
@@ -229,14 +229,14 @@ Query: "Explain the proof of Fermat's Last Theorem step-by-step"
229
229
│ - worker-1: 85 prefill + 25 active = 110 (BEST) │
230
230
│ - worker-2: 97 prefill + 20 active = 117 │
231
231
│ - worker-3: 100 prefill + 18 active = 118 │
232
- │ 4. Selection: worker-1 (40% prefill cost reduction) │
232
+ │ 4. Selection: worker-1 (significant prefill cost reduction) │
233
233
└─────────────────────────────────────────────────────────────────┘
234
234
235
235
Result:
236
236
- Right model (deepseek-v31 for math reasoning)
237
237
- Right worker (worker-1 with relevant KV cache)
238
238
- Right mode (reasoning enabled)
239
- - 40% faster TTFT vs. random worker selection
239
+ - Significantly faster TTFT vs. random worker selection
240
240
```
241
241
242
242
### 2.4 Why Integration Matters
@@ -499,9 +499,9 @@ prompt_guard:
499
499
500
500
- **Parallel Execution:** PII and Jailbreak detection run in parallel
501
501
- **Early Exit:** Cache hits bypass all model inference
502
- - **Keyword Routing:** Fast path (~1-2ms) for deterministic patterns
502
+ - **Keyword Routing:** Fast path for deterministic patterns
503
503
- **CPU Optimization:** All models optimized for CPU inference to reduce cost
504
- - **LoRA Adapters:** Jailbreak model uses lightweight adapters (~10-20 MB) for faster loading
504
+ - **LoRA Adapters:** Jailbreak model uses lightweight adapters for faster loading
505
505
506
506
---
507
507
@@ -640,19 +640,19 @@ graph TB
640
640
│ - PII Detection: Scan for PERSON, EMAIL, SSN, etc. │
641
641
│ - Jailbreak Detection: Binary classification for prompt injection │
642
642
│ - Action: BLOCK if security violation detected │
643
- │ - Latency: ~ 5-10ms │
643
+ │ - Latency: Low │
644
644
│ │
645
645
│ Step 3: Semantic Cache Lookup │
646
646
│ - Generate BERT embedding for query │
647
647
│ - Search Redis for similar queries (threshold: 0.85) │
648
648
│ - Action: Return cached response if HIT │
649
- │ - Latency: ~ 2-5ms (cache hit), ~ 10ms (cache miss) │
649
+ │ - Latency: Very low (cache hit), Low (cache miss) │
650
650
│ │
651
651
│ Step 4: Intent Classification │
652
652
│ - ModernBERT classification (10 categories) │
653
653
│ - Entropy-based reasoning decision │
654
654
│ - Category: math, code, reasoning, creative, etc. │
655
- │ - Latency: ~ 20-30ms │
655
+ │ - Latency: Moderate │
656
656
│ │
657
657
│ Step 5: Model Selection │
658
658
│ - Lookup category → model scores mapping │
@@ -671,7 +671,7 @@ graph TB
671
671
│ * Inject reasoning parameters if applicable │
672
672
│ * Add selected tools if tool selection enabled │
673
673
│ │
674
- │ Total Latency: ~ 30-50ms (parallel execution) │
674
+ │ Total Latency: Low to Moderate (parallel execution) │
675
675
└─────────────────────────────────────────────────────────────────────────────┘
676
676
↓
677
677
┌─────────────────────────────────────────────────────────────────────────────┐
@@ -689,14 +689,14 @@ graph TB
689
689
│ * potential_active_blocks = current_active + new_request_blocks │
690
690
│ * logit = kv_overlap_weight × prefill + active │
691
691
│ - Select worker with lowest cost │
692
- │ - Latency: ~ 5-10ms │
692
+ │ - Latency: Low │
693
693
│ │
694
694
│ Step 9: Request Forwarding │
695
695
│ - Forward to selected worker (prefill or decode) │
696
696
│ - Worker processes request with vLLM/SGLang/TRT-LLM │
697
697
│ - KVBM tracks new KV cache blocks │
698
698
│ │
699
- │ Total Latency: ~ 10-20ms (routing overhead) │
699
+ │ Total Latency: Low (routing overhead) │
700
700
└─────────────────────────────────────────────────────────────────────────────┘
701
701
↓
702
702
┌─────────────────────────────────────────────────────────────────────────────┐
@@ -745,24 +745,24 @@ The integration leverages **two complementary caching layers**:
745
745
```
746
746
Scenario 1: Exact Semantic Match
747
747
Query: "What is the capital of France?"
748
- Semantic Cache: HIT (similarity: 0.98 with "What's France's capital?")
748
+ Semantic Cache: HIT (high similarity with "What's France's capital?")
749
749
KV Cache: N/A (inference skipped)
750
- Latency: ~ 5ms (cache lookup only)
751
- Cost Reduction: 100% (no inference)
750
+ Latency: Very low (cache lookup only)
751
+ Cost Reduction: Maximum (no inference)
752
752
753
753
Scenario 2: Partial Semantic Match + KV Reuse
754
754
Query: "Explain the proof of Fermat's Last Theorem in detail"
755
755
Semantic Cache: MISS (novel query)
756
- KV Cache: HIT (40% overlap with "Explain Fermat's Last Theorem")
757
- Latency: ~ 200ms (vs. ~ 350ms without KV reuse)
758
- Cost Reduction: 40% (prefill cost)
756
+ KV Cache: HIT (significant overlap with "Explain Fermat's Last Theorem")
757
+ Latency: Reduced (vs. without KV reuse)
758
+ Cost Reduction: Significant (prefill cost saved )
759
759
760
760
Scenario 3: Novel Query
761
761
Query: "Design a distributed consensus algorithm for blockchain"
762
762
Semantic Cache: MISS
763
763
KV Cache: MISS
764
- Latency: ~ 500ms (full inference)
765
- Cost Reduction: 0% (but routed to best model)
764
+ Latency: Standard (full inference)
765
+ Cost Reduction: None (but routed to best model)
766
766
```
767
767
768
768
### 4.5 Integration in Kubernetes
@@ -833,20 +833,20 @@ The integration follows a **layered service architecture** in Kubernetes, with c
833
833
│ ├────────────────────────────────────────────────────────────┤ │
834
834
│ │ │ │
835
835
│ │ [ Model Pool: deepseek-v31] │ │
836
- │ │ - StatefulSet: 4 replicas │ │
836
+ │ │ - StatefulSet: Multiple replicas │ │
837
837
│ │ - Service: vllm-deepseek-v31-svc │ │
838
- │ │ - GPU: 2x H100 per pod │ │
838
+ │ │ - GPU: Multi-GPU per pod │ │
839
839
│ │ - Features: prefix caching, fp8 KV cache │ │
840
840
│ │ │ │
841
841
│ │ [ Model Pool: qwen3] │ │
842
- │ │ - StatefulSet: 3 replicas │ │
842
+ │ │ - StatefulSet: Multiple replicas │ │
843
843
│ │ - Service: vllm-qwen3-svc │ │
844
- │ │ - GPU: 2x H100 per pod │ │
844
+ │ │ - GPU: Multi-GPU per pod │ │
845
845
│ │ │ │
846
846
│ │ [ Model Pool: phi4] │ │
847
- │ │ - StatefulSet: 2 replicas │ │
847
+ │ │ - StatefulSet: Multiple replicas │ │
848
848
│ │ - Service: vllm-phi4-svc │ │
849
- │ │ - GPU: 1x H100 per pod │ │
849
+ │ │ - GPU: Single/Multi-GPU per pod │ │
850
850
│ │ │ │
851
851
│ └────────────────────────────────────────────────────────────┘ │
852
852
│ │
@@ -1167,9 +1167,9 @@ Dynamo Frontend discovers workers through Kubernetes Headless Services, which pr
1167
1167
1168
1168
**Success Criteria:**
1169
1169
1170
- - ✅ Semantic cache hit rate > 30% (production workloads)
1171
- - ✅ Cache hit latency < 10ms
1172
- - ✅ Combined cache hit rate (semantic + KV) > 60%
1170
+ - ✅ High semantic cache hit rate (production workloads)
1171
+ - ✅ Low cache hit latency
1172
+ - ✅ High combined cache hit rate (semantic + KV)
1173
1173
1174
1174
#### Phase 3: Observability & Monitoring
1175
1175
@@ -1220,7 +1220,7 @@ Dynamo Frontend discovers workers through Kubernetes Headless Services, which pr
1220
1220
**Success Criteria:**
1221
1221
1222
1222
- ✅ Single distributed trace spans all layers (VSR → Dynamo → Worker)
1223
- - ✅ < 1% trace sampling overhead
1223
+ - ✅ Minimal trace sampling overhead
1224
1224
- ✅ Real-time dashboards operational
1225
1225
- ✅ Trace context properly propagated across service boundaries
1226
1226
@@ -1251,8 +1251,8 @@ Dynamo Frontend discovers workers through Kubernetes Headless Services, which pr
1251
1251
1252
1252
**Success Criteria:**
1253
1253
1254
- - ✅ 99.9% availability
1255
- - ✅ < 50ms P99 latency (routing overhead)
1254
+ - ✅ High availability
1255
+ - ✅ Low P99 latency (routing overhead)
1256
1256
- ✅ 10K+ RPS sustained throughput
1257
1257
1258
1258
---
@@ -1348,14 +1348,14 @@ prompt_guard:
1348
1348
1349
1349
| Metric | Threshold | Alert Severity |
1350
1350
| --------| -----------| ----------------|
1351
- | Semantic Router Latency (P99) | > 100ms | Warning |
1352
- | Dynamo Router Latency (P99) | > 50ms | Warning |
1353
- | Combined Latency (P99) | > 150ms | Critical |
1354
- | Semantic Cache Hit Rate | < 20% | Warning |
1355
- | KV Cache Hit Rate | < 30% | Warning |
1356
- | Security Block Rate | > 5% | Warning |
1357
- | Error Rate | > 1% | Critical |
1358
- | GPU Utilization | < 50% or > 95% | Warning |
1351
+ | Semantic Router Latency (P99) | High | Warning |
1352
+ | Dynamo Router Latency (P99) | High | Warning |
1353
+ | Combined Latency (P99) | Very High | Critical |
1354
+ | Semantic Cache Hit Rate | Low | Warning |
1355
+ | KV Cache Hit Rate | Low | Warning |
1356
+ | Security Block Rate | High | Warning |
1357
+ | Error Rate | High | Critical |
1358
+ | GPU Utilization | Too Low or Too High | Warning |
1359
1359
1360
1360
** Dashboards:**
1361
1361
0 commit comments