|
| 1 | +//! Tests for LoRA PII detector implementation |
| 2 | +
|
| 3 | +use super::pii_lora::*; |
| 4 | +use crate::test_fixtures::{fixtures::*, test_utils::*}; |
| 5 | +use rstest::*; |
| 6 | +use serial_test::serial; |
| 7 | +use std::sync::Arc; |
| 8 | + |
| 9 | +/// Test PIILoRAClassifier creation with cached model (OPTIMIZED) |
| 10 | +#[rstest] |
| 11 | +#[serial] |
| 12 | +fn test_pii_lora_pii_lora_classifier_new(cached_pii_classifier: Option<Arc<PIILoRAClassifier>>) { |
| 13 | + if let Some(classifier) = cached_pii_classifier { |
| 14 | + println!("Testing PIILoRAClassifier with cached model - instant access!"); |
| 15 | + |
| 16 | + // Test actual PII detection with cached model |
| 17 | + { |
| 18 | + let test_text = "My name is John Doe and my email is [email protected]"; |
| 19 | + match classifier.detect_pii(test_text) { |
| 20 | + Ok(result) => { |
| 21 | + println!("Real model PII detection result: has_pii={}, types={:?}, confidence={:.3}, time={}ms", |
| 22 | + result.has_pii, result.pii_types, result.confidence, result.processing_time_ms); |
| 23 | + |
| 24 | + // Validate real model output |
| 25 | + assert!(result.confidence >= 0.0 && result.confidence <= 1.0); |
| 26 | + assert!(result.processing_time_ms > 0); |
| 27 | + assert!(result.processing_time_ms < 10000); |
| 28 | + |
| 29 | + // Check PII detection logic |
| 30 | + if result.has_pii { |
| 31 | + assert!(!result.pii_types.is_empty()); |
| 32 | + assert!(!result.occurrences.is_empty()); |
| 33 | + } else { |
| 34 | + assert!(result.pii_types.is_empty()); |
| 35 | + assert!(result.occurrences.is_empty()); |
| 36 | + } |
| 37 | + } |
| 38 | + Err(e) => { |
| 39 | + println!("Real model PII detection failed: {}", e); |
| 40 | + } |
| 41 | + } |
| 42 | + } |
| 43 | + } else { |
| 44 | + println!("Cached PII classifier not available, skipping test"); |
| 45 | + } |
| 46 | +} |
| 47 | + |
| 48 | +/// Test cached model batch PII detection (OPTIMIZED) |
| 49 | +#[rstest] |
| 50 | +#[serial] |
| 51 | +fn test_pii_lora_pii_lora_classifier_batch_detect( |
| 52 | + cached_pii_classifier: Option<Arc<PIILoRAClassifier>>, |
| 53 | +) { |
| 54 | + if let Some(classifier) = cached_pii_classifier { |
| 55 | + println!("Testing batch PII detection with cached model!"); |
| 56 | + { |
| 57 | + let test_texts = vec![ |
| 58 | + "Hello, my name is Alice", |
| 59 | + "Contact me at [email protected]", |
| 60 | + "My phone number is 555-1234", |
| 61 | + "This is a normal message without PII", |
| 62 | + ]; |
| 63 | + |
| 64 | + match classifier.batch_detect(&test_texts) { |
| 65 | + Ok(results) => { |
| 66 | + println!( |
| 67 | + "Real model batch PII detection succeeded with {} results", |
| 68 | + results.len() |
| 69 | + ); |
| 70 | + assert_eq!(results.len(), test_texts.len()); |
| 71 | + |
| 72 | + for (i, result) in results.iter().enumerate() { |
| 73 | + println!("Batch PII result {}: has_pii={}, types={:?}, confidence={:.3}, time={}ms", |
| 74 | + i, result.has_pii, result.pii_types, result.confidence, result.processing_time_ms); |
| 75 | + |
| 76 | + // Validate each result |
| 77 | + assert!(result.confidence >= 0.0 && result.confidence <= 1.0); |
| 78 | + assert!(result.processing_time_ms > 0); |
| 79 | + |
| 80 | + // Check PII detection consistency |
| 81 | + assert_eq!(result.has_pii, !result.pii_types.is_empty()); |
| 82 | + assert_eq!(result.has_pii, !result.occurrences.is_empty()); |
| 83 | + } |
| 84 | + } |
| 85 | + Err(e) => { |
| 86 | + println!("Real model batch PII detection failed: {}", e); |
| 87 | + } |
| 88 | + } |
| 89 | + } |
| 90 | + } else { |
| 91 | + println!("Cached PII classifier not available, skipping batch test"); |
| 92 | + } |
| 93 | +} |
| 94 | + |
| 95 | +/// Test cached model parallel PII detection (OPTIMIZED) |
| 96 | +#[rstest] |
| 97 | +#[serial] |
| 98 | +fn test_pii_lora_pii_lora_classifier_parallel_detect( |
| 99 | + cached_pii_classifier: Option<Arc<PIILoRAClassifier>>, |
| 100 | +) { |
| 101 | + if let Some(classifier) = cached_pii_classifier { |
| 102 | + println!("Testing parallel PII detection with cached model!"); |
| 103 | + { |
| 104 | + let test_texts = vec![ |
| 105 | + "My SSN is 123-45-6789", |
| 106 | + "Call me at (555) 123-4567", |
| 107 | + |
| 108 | + ]; |
| 109 | + |
| 110 | + match classifier.parallel_detect(&test_texts) { |
| 111 | + Ok(results) => { |
| 112 | + println!( |
| 113 | + "Real model parallel PII detection succeeded with {} results", |
| 114 | + results.len() |
| 115 | + ); |
| 116 | + assert_eq!(results.len(), test_texts.len()); |
| 117 | + |
| 118 | + for (i, result) in results.iter().enumerate() { |
| 119 | + println!("Parallel PII result {}: has_pii={}, types={:?}, confidence={:.3}, time={}ms", |
| 120 | + i, result.has_pii, result.pii_types, result.confidence, result.processing_time_ms); |
| 121 | + |
| 122 | + // Validate each result |
| 123 | + assert!(result.confidence >= 0.0 && result.confidence <= 1.0); |
| 124 | + assert!(result.processing_time_ms > 0); |
| 125 | + |
| 126 | + // Check PII detection consistency |
| 127 | + assert_eq!(result.has_pii, !result.pii_types.is_empty()); |
| 128 | + assert_eq!(result.has_pii, !result.occurrences.is_empty()); |
| 129 | + |
| 130 | + // Validate occurrences if PII detected |
| 131 | + if result.has_pii { |
| 132 | + for occurrence in &result.occurrences { |
| 133 | + assert!(!occurrence.pii_type.is_empty()); |
| 134 | + assert!(!occurrence.token.is_empty()); |
| 135 | + assert!( |
| 136 | + occurrence.confidence >= 0.0 && occurrence.confidence <= 1.0 |
| 137 | + ); |
| 138 | + assert!(occurrence.start_pos <= occurrence.end_pos); |
| 139 | + } |
| 140 | + } |
| 141 | + } |
| 142 | + } |
| 143 | + Err(e) => { |
| 144 | + println!("Real model parallel PII detection failed: {}", e); |
| 145 | + } |
| 146 | + } |
| 147 | + } |
| 148 | + } else { |
| 149 | + println!("Cached PII classifier not available, skipping parallel test"); |
| 150 | + } |
| 151 | +} |
| 152 | + |
| 153 | +/// Test PIILoRAClassifier error handling with cached model (OPTIMIZED) |
| 154 | +#[rstest] |
| 155 | +#[serial] |
| 156 | +fn test_pii_lora_pii_lora_classifier_error_handling( |
| 157 | + cached_pii_classifier: Option<Arc<PIILoRAClassifier>>, |
| 158 | +) { |
| 159 | + if let Some(classifier) = cached_pii_classifier { |
| 160 | + println!("Testing error handling with cached model!"); |
| 161 | + |
| 162 | + // Test with cached model first (should work) |
| 163 | + let test_text = "Test error handling"; |
| 164 | + match classifier.detect_pii(test_text) { |
| 165 | + Ok(_) => println!("Cached model error handling test passed"), |
| 166 | + Err(e) => println!("Cached model error: {}", e), |
| 167 | + } |
| 168 | + } else { |
| 169 | + println!("Cached PII classifier not available, skipping error handling test"); |
| 170 | + } |
| 171 | + |
| 172 | + // Test error scenarios with invalid paths |
| 173 | + let invalid_model_result = PIILoRAClassifier::new("", true); |
| 174 | + assert!(invalid_model_result.is_err()); |
| 175 | + |
| 176 | + let nonexistent_model_result = PIILoRAClassifier::new("/nonexistent/path/to/model", true); |
| 177 | + assert!(nonexistent_model_result.is_err()); |
| 178 | + |
| 179 | + println!("PIILoRAClassifier error handling test passed"); |
| 180 | +} |
| 181 | + |
| 182 | +/// Test PII detection output format with cached model (OPTIMIZED) |
| 183 | +#[rstest] |
| 184 | +#[serial] |
| 185 | +fn test_pii_lora_pii_detection_output_format( |
| 186 | + cached_pii_classifier: Option<Arc<PIILoRAClassifier>>, |
| 187 | +) { |
| 188 | + if let Some(classifier) = cached_pii_classifier { |
| 189 | + println!("Testing PII detection output format with cached model!"); |
| 190 | + |
| 191 | + let test_text = "My name is John Doe and my email is [email protected]"; |
| 192 | + match classifier.detect_pii(test_text) { |
| 193 | + Ok(result) => { |
| 194 | + // Test output format |
| 195 | + assert!(result.confidence >= 0.0 && result.confidence <= 1.0); |
| 196 | + assert!(result.processing_time_ms > 0); |
| 197 | + |
| 198 | + // Test PII types format (adapt to real model output) |
| 199 | + for pii_type in &result.pii_types { |
| 200 | + assert!(!pii_type.is_empty()); |
| 201 | + assert!(pii_type |
| 202 | + .chars() |
| 203 | + .all(|c| c.is_ascii_alphabetic() || c == '_' || c == '-')); |
| 204 | + println!(" Detected PII type: '{}'", pii_type); |
| 205 | + } |
| 206 | + |
| 207 | + println!("PII detection output format test passed with cached model"); |
| 208 | + } |
| 209 | + Err(e) => { |
| 210 | + println!("PII detection failed: {}", e); |
| 211 | + } |
| 212 | + } |
| 213 | + } else { |
| 214 | + println!("Cached PII classifier not available, skipping output format test"); |
| 215 | + } |
| 216 | +} |
| 217 | + |
| 218 | +/// Test PII type classification with cached model (OPTIMIZED) |
| 219 | +#[rstest] |
| 220 | +#[serial] |
| 221 | +fn test_pii_lora_pii_type_classification(cached_pii_classifier: Option<Arc<PIILoRAClassifier>>) { |
| 222 | + if let Some(classifier) = cached_pii_classifier { |
| 223 | + println!("Testing PII type classification with cached model!"); |
| 224 | + |
| 225 | + let test_text = "My name is John Doe and my email is [email protected]"; |
| 226 | + match classifier.detect_pii(test_text) { |
| 227 | + Ok(result) => { |
| 228 | + for pii_type in &result.pii_types { |
| 229 | + assert!(pii_type |
| 230 | + .chars() |
| 231 | + .all(|c| c.is_ascii_alphabetic() || c == '_' || c == '-')); |
| 232 | + println!(" Detected PII type: '{}'", pii_type); |
| 233 | + } |
| 234 | + println!("PII type classification test passed with cached model"); |
| 235 | + } |
| 236 | + Err(e) => println!("PII type classification failed: {}", e), |
| 237 | + } |
| 238 | + } else { |
| 239 | + println!("Cached PII classifier not available, skipping type classification test"); |
| 240 | + } |
| 241 | +} |
| 242 | + |
| 243 | +/// Test token-level PII detection with cached model (OPTIMIZED) |
| 244 | +#[rstest] |
| 245 | +#[serial] |
| 246 | +fn test_pii_lora_token_level_pii_detection(cached_pii_classifier: Option<Arc<PIILoRAClassifier>>) { |
| 247 | + if let Some(classifier) = cached_pii_classifier { |
| 248 | + println!("Testing token-level PII detection with cached model!"); |
| 249 | + |
| 250 | + let test_text = "My name is John Doe and my email is [email protected]"; |
| 251 | + match classifier.detect_pii(test_text) { |
| 252 | + Ok(result) => { |
| 253 | + // Test token-level detection |
| 254 | + for occurrence in &result.occurrences { |
| 255 | + assert!(occurrence.start_pos <= occurrence.end_pos); |
| 256 | + assert!(!occurrence.pii_type.is_empty()); |
| 257 | + assert!(occurrence.confidence >= 0.0 && occurrence.confidence <= 1.0); |
| 258 | + println!( |
| 259 | + " Token PII: '{}' at {}:{}, type='{}', confidence={:.3}", |
| 260 | + occurrence.token, |
| 261 | + occurrence.start_pos, |
| 262 | + occurrence.end_pos, |
| 263 | + occurrence.pii_type, |
| 264 | + occurrence.confidence |
| 265 | + ); |
| 266 | + } |
| 267 | + println!("Token-level PII detection test passed with cached model"); |
| 268 | + } |
| 269 | + Err(e) => println!("Token-level PII detection failed: {}", e), |
| 270 | + } |
| 271 | + } else { |
| 272 | + println!("Cached PII classifier not available, skipping token-level test"); |
| 273 | + } |
| 274 | +} |
| 275 | + |
| 276 | +/// Performance test for PIILoRAClassifier cached model operations (OPTIMIZED) |
| 277 | +#[rstest] |
| 278 | +#[serial] |
| 279 | +fn test_pii_lora_pii_lora_classifier_performance( |
| 280 | + cached_pii_classifier: Option<Arc<PIILoRAClassifier>>, |
| 281 | +) { |
| 282 | + if let Some(classifier) = cached_pii_classifier { |
| 283 | + println!("Testing PIILoRAClassifier cached model performance"); |
| 284 | + |
| 285 | + let test_texts = vec![ |
| 286 | + "My name is John Doe and my email is [email protected]", |
| 287 | + "Contact Alice at [email protected] or call 555-1234", |
| 288 | + "The weather is nice today", |
| 289 | + ]; |
| 290 | + |
| 291 | + let (_, total_duration) = measure_execution_time(|| { |
| 292 | + for text in &test_texts { |
| 293 | + let (_, single_duration) = |
| 294 | + measure_execution_time(|| match classifier.detect_pii(text) { |
| 295 | + Ok(result) => { |
| 296 | + assert!(result.confidence >= 0.0 && result.confidence <= 1.0); |
| 297 | + assert!(result.processing_time_ms > 0); |
| 298 | + } |
| 299 | + Err(e) => println!("Performance test failed for '{}': {}", text, e), |
| 300 | + }); |
| 301 | + assert!( |
| 302 | + single_duration.as_secs() < 15, |
| 303 | + "Single PII detection took too long: {:?}", |
| 304 | + single_duration |
| 305 | + ); |
| 306 | + } |
| 307 | + }); |
| 308 | + |
| 309 | + assert!( |
| 310 | + total_duration.as_secs() < 60, |
| 311 | + "Batch PII processing took too long: {:?}", |
| 312 | + total_duration |
| 313 | + ); |
| 314 | + println!( |
| 315 | + "PIILoRAClassifier cached model performance: {} texts in {:?}", |
| 316 | + test_texts.len(), |
| 317 | + total_duration |
| 318 | + ); |
| 319 | + } else { |
| 320 | + println!("Cached PII classifier not available, skipping performance test"); |
| 321 | + } |
| 322 | +} |
0 commit comments