|
| 1 | +package cache |
| 2 | + |
| 3 | +import ( |
| 4 | + "slices" |
| 5 | + "testing" |
| 6 | +) |
| 7 | + |
| 8 | +func TestSearchLayerHeapManagement(t *testing.T) { |
| 9 | + t.Run("retains the closest neighbor when ef is saturated", func(t *testing.T) { |
| 10 | + // Regression fixture: with the previous max-heap candidates/min-heap results |
| 11 | + // mix, trimming to ef would evict the best element instead of the worst. |
| 12 | + queryEmbedding := []float32{1.0} |
| 13 | + |
| 14 | + entries := []CacheEntry{ |
| 15 | + {Embedding: []float32{0.1}}, // entry point has low similarity |
| 16 | + {Embedding: []float32{1.0}}, // neighbor is the true nearest |
| 17 | + } |
| 18 | + |
| 19 | + entryNode := &HNSWNode{ |
| 20 | + entryIndex: 0, |
| 21 | + neighbors: map[int][]int{ |
| 22 | + 0: {1}, |
| 23 | + }, |
| 24 | + maxLayer: 0, |
| 25 | + } |
| 26 | + |
| 27 | + neighborNode := &HNSWNode{ |
| 28 | + entryIndex: 1, |
| 29 | + neighbors: map[int][]int{ |
| 30 | + 0: {0}, |
| 31 | + }, |
| 32 | + maxLayer: 0, |
| 33 | + } |
| 34 | + |
| 35 | + index := &HNSWIndex{ |
| 36 | + nodes: []*HNSWNode{entryNode, neighborNode}, |
| 37 | + nodeIndex: map[int]*HNSWNode{ |
| 38 | + 0: entryNode, |
| 39 | + 1: neighborNode, |
| 40 | + }, |
| 41 | + entryPoint: 0, |
| 42 | + maxLayer: 0, |
| 43 | + efConstruction: 2, |
| 44 | + M: 1, |
| 45 | + Mmax: 1, |
| 46 | + Mmax0: 2, |
| 47 | + ml: 1, |
| 48 | + } |
| 49 | + |
| 50 | + results := index.searchLayer(queryEmbedding, index.entryPoint, 1, 0, entries) |
| 51 | + |
| 52 | + if !slices.Contains(results, 1) { |
| 53 | + t.Fatalf("expected results to contain best neighbor 1, got %v", results) |
| 54 | + } |
| 55 | + if slices.Contains(results, 0) { |
| 56 | + t.Fatalf("expected results to drop entry point 0 once ef trimmed, got %v", results) |
| 57 | + } |
| 58 | + }) |
| 59 | + |
| 60 | + t.Run("continues exploring even when next candidate looks worse", func(t *testing.T) { |
| 61 | + // Regression fixture: the break condition used the wrong polarity so the |
| 62 | + // search stopped before expanding the intermediate (worse) vertex, making |
| 63 | + // the actual best neighbor unreachable. |
| 64 | + queryEmbedding := []float32{1.0} |
| 65 | + |
| 66 | + entries := []CacheEntry{ |
| 67 | + {Embedding: []float32{0.2}}, // entry point |
| 68 | + {Embedding: []float32{0.05}}, // intermediate node with poor similarity |
| 69 | + {Embedding: []float32{1.0}}, // hidden best match |
| 70 | + } |
| 71 | + |
| 72 | + entryNode := &HNSWNode{ |
| 73 | + entryIndex: 0, |
| 74 | + neighbors: map[int][]int{ |
| 75 | + 0: {1}, |
| 76 | + }, |
| 77 | + maxLayer: 0, |
| 78 | + } |
| 79 | + |
| 80 | + intermediateNode := &HNSWNode{ |
| 81 | + entryIndex: 1, |
| 82 | + neighbors: map[int][]int{ |
| 83 | + 0: {0, 2}, |
| 84 | + }, |
| 85 | + maxLayer: 0, |
| 86 | + } |
| 87 | + |
| 88 | + bestNode := &HNSWNode{ |
| 89 | + entryIndex: 2, |
| 90 | + neighbors: map[int][]int{ |
| 91 | + 0: {1}, |
| 92 | + }, |
| 93 | + maxLayer: 0, |
| 94 | + } |
| 95 | + |
| 96 | + index := &HNSWIndex{ |
| 97 | + nodes: []*HNSWNode{entryNode, intermediateNode, bestNode}, |
| 98 | + nodeIndex: map[int]*HNSWNode{ |
| 99 | + 0: entryNode, |
| 100 | + 1: intermediateNode, |
| 101 | + 2: bestNode, |
| 102 | + }, |
| 103 | + entryPoint: 0, |
| 104 | + maxLayer: 0, |
| 105 | + efConstruction: 2, |
| 106 | + M: 1, |
| 107 | + Mmax: 1, |
| 108 | + Mmax0: 2, |
| 109 | + ml: 1, |
| 110 | + } |
| 111 | + |
| 112 | + results := index.searchLayer(queryEmbedding, index.entryPoint, 2, 0, entries) |
| 113 | + |
| 114 | + if !slices.Contains(results, 2) { |
| 115 | + t.Fatalf("expected results to reach best neighbor 2 via intermediate node, got %v", results) |
| 116 | + } |
| 117 | + }) |
| 118 | +} |
0 commit comments