@@ -264,14 +264,14 @@ If you are not sure about the deployment setting and the distribution of the use
264
264
- Disable chunked prefill `--enable-chunked-prefill=False`
265
265
- Disable prefix caching
266
266
- If the model supports long context length, set the `--max-seq-len-to-capture` to 16384
267
- - Set the `--num-scheduler-step ` to 10 or 15.
267
+ - Set `--num-scheduler-steps ` to 10 or 15.
268
268
- Set the AMD environment:
269
269
- `sh -c ' echo 0 > /proc/sys/kernel/numa_balancing' `
270
270
- `export NCCL_MIN_NCHANNELS=112`
271
271
- Increase `--max-num-seqs` to 512 and above, depending on the GPU memory and compute resource of the GPUs.
272
272
273
273
```bash
274
- VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve meta-llama/Llama-3.1-70B-Instruct --host 0.0.0.0 --port 8000 -tp 4 --max-num-seqs 1024 --max-seq-len-to-capture 16384 --served-model-name meta-llama/Llama-3.1-70B-Instruct --enable-chunked-prefill=False --num-scheduler-step 15 --max-num-seqs 1024
274
+ VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve meta-llama/Llama-3.1-70B-Instruct --host 0.0.0.0 --port 8000 -tp 4 --max-num-seqs 1024 --max-seq-len-to-capture 16384 --served-model-name meta-llama/Llama-3.1-70B-Instruct --enable-chunked-prefill=False --num-scheduler-steps 15 --max-num-seqs 1024
275
275
```
276
276
277
277
For quick setup, we have compiled the Docker Image of vLLM 0.6.2 (commit: _cb3b2b9ba4a95c413a879e30e2b8674187519a93_) to Github Container Registry.
@@ -301,7 +301,7 @@ sudo docker run -it \
301
301
Now launch the LLM server with the parameters that we have found:
302
302
303
303
```bash
304
- VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve meta-llama/Llama-3.1-70B-Instruct --host 0.0.0.0 --port 8000 -tp 4 --max-num-seqs 1024 --max-seq-len-to-capture 16384 --served-model-name meta-llama/Llama-3.1-70B-Instruct --enable-chunked-prefill=False --num-scheduler-step 15 --max-num-seqs 1024
304
+ VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve meta-llama/Llama-3.1-70B-Instruct --host 0.0.0.0 --port 8000 -tp 4 --max-num-seqs 1024 --max-seq-len-to-capture 16384 --served-model-name meta-llama/Llama-3.1-70B-Instruct --enable-chunked-prefill=False --num-scheduler-steps 15 --max-num-seqs 1024
305
305
```
306
306
307
307
### Conclusion
@@ -336,5 +336,5 @@ We have built the ROCm compatible vLLM docker from Dockerfile.rocm found in the
336
336
| ------------- | ------------- |
337
337
| vLLM Default Configuration | `VLLM_RPC_TIMEOUT=30000 VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve Llama-3.1-405B-Instruct -tp 8 --max-num-seqs 1024 --max-num-batched-tokens 1024 ` |
338
338
| TGI Default Configuration | `ROCM_USE_FLASH_ATTN_V2_TRITON=false TRUST_REMOTE_CODE=true text-generation-launcher --num-shard 8 --sharded true --max-concurrent-requests 1024 --model-id Llama-3.1-405B-Instruct` |
339
- | vLLM (This Guide) | `VLLM_RPC_TIMEOUT=30000 VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve Llama-3.1-405B-Instruct -tp 8 --max-seq-len-to-capture 16384 --enable-chunked-prefill=False --num-scheduler-step 15 --max-num-seqs 1024 ` |
340
- | TGI (This Guide) | `ROCM_USE_FLASH_ATTN_V2_TRITON=false TRUST_REMOTE_CODE=true text-generation-launcher --num-shard 8 --sharded true --max-concurrent-requests 1024 --max-total-tokens 131072 --max-input-tokens 131000 --model-id Llama-3.1-405B-Instruct` |
339
+ | vLLM (This Guide) | `VLLM_RPC_TIMEOUT=30000 VLLM_USE_TRITON_FLASH_ATTN=0 vllm serve Llama-3.1-405B-Instruct -tp 8 --max-seq-len-to-capture 16384 --enable-chunked-prefill=False --num-scheduler-steps 15 --max-num-seqs 1024 ` |
340
+ | TGI (This Guide) | `ROCM_USE_FLASH_ATTN_V2_TRITON=false TRUST_REMOTE_CODE=true text-generation-launcher --num-shard 8 --sharded true --max-concurrent-requests 1024 --max-total-tokens 131072 --max-input-tokens 131000 --model-id Llama-3.1-405B-Instruct` |
0 commit comments