|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | +from typing import Any |
| 4 | + |
| 5 | +import numpy as np |
| 6 | +import pytest |
| 7 | +from scipy.spatial.distance import cosine |
| 8 | + |
| 9 | +from ...utils import EmbedModelInfo |
| 10 | + |
| 11 | + |
| 12 | +def _get_vllm_embeddings(vllm_runner, model_info: EmbedModelInfo, |
| 13 | + test_texts: list[str]): |
| 14 | + """Get embeddings from vLLM.""" |
| 15 | + vllm_extra_kwargs: dict[str, Any] = {} |
| 16 | + if model_info.architecture == "GteNewModel": |
| 17 | + vllm_extra_kwargs["hf_overrides"] = {"architectures": ["GteNewModel"]} |
| 18 | + |
| 19 | + with vllm_runner( |
| 20 | + model_info.name, |
| 21 | + runner="pooling", |
| 22 | + max_model_len=None, |
| 23 | + trust_remote_code=True, |
| 24 | + **vllm_extra_kwargs, |
| 25 | + ) as vllm_model: |
| 26 | + embeddings = vllm_model.encode(test_texts) |
| 27 | + |
| 28 | + # Extract tensor/numpy data |
| 29 | + data = [] |
| 30 | + for emb in embeddings: |
| 31 | + if hasattr(emb, "outputs"): |
| 32 | + data.append(emb.outputs.data.cpu().numpy()) |
| 33 | + else: |
| 34 | + data.append(emb.cpu().numpy() if hasattr(emb, "cpu") else emb) |
| 35 | + return np.array(data) |
| 36 | + |
| 37 | + |
| 38 | +def _get_hf_embeddings(hf_runner, model_info: EmbedModelInfo, |
| 39 | + test_texts: list[str]): |
| 40 | + """Get embeddings from HuggingFace ST interface.""" |
| 41 | + with hf_runner( |
| 42 | + model_info.name, |
| 43 | + is_sentence_transformer=True, |
| 44 | + dtype="float32", |
| 45 | + ) as hf_model: |
| 46 | + embeddings = hf_model.encode(test_texts) |
| 47 | + if hasattr(embeddings, "cpu"): |
| 48 | + return embeddings.cpu().numpy() |
| 49 | + return np.array(embeddings) |
| 50 | + |
| 51 | + |
| 52 | +# ST models with projector (Dense) layers |
| 53 | +ST_PROJECTOR_MODELS = [ |
| 54 | + EmbedModelInfo( |
| 55 | + "TencentBAC/Conan-embedding-v1", |
| 56 | + architecture="BertModel", |
| 57 | + enable_test=True, |
| 58 | + ), |
| 59 | +] |
| 60 | + |
| 61 | + |
| 62 | +@pytest.mark.parametrize("model_info", ST_PROJECTOR_MODELS) |
| 63 | +def test_st_projector_loading(vllm_runner, model_info: EmbedModelInfo) -> None: |
| 64 | + """Ensure projector models load and output expected dim.""" |
| 65 | + if not model_info.enable_test: |
| 66 | + pytest.skip("Skipping test.") |
| 67 | + |
| 68 | + test_texts = ["This is a test sentence."] |
| 69 | + embeddings_data = _get_vllm_embeddings(vllm_runner, model_info, test_texts) |
| 70 | + |
| 71 | + actual_dim = embeddings_data.shape[-1] |
| 72 | + expected_dim = 1792 |
| 73 | + assert actual_dim == expected_dim, ( |
| 74 | + f"Expected {expected_dim}, got {actual_dim}") |
| 75 | + |
| 76 | + |
| 77 | +@pytest.mark.parametrize("model_info", ST_PROJECTOR_MODELS) |
| 78 | +def test_compare_with_hf_dimensions(hf_runner, vllm_runner, |
| 79 | + model_info: EmbedModelInfo) -> None: |
| 80 | + """Compare embedding dimensions between vLLM and HuggingFace.""" |
| 81 | + if not model_info.enable_test: |
| 82 | + pytest.skip("Skipping test.") |
| 83 | + |
| 84 | + test_texts = ["This is a test sentence for dimension comparison."] |
| 85 | + |
| 86 | + vllm_data = _get_vllm_embeddings(vllm_runner, model_info, test_texts) |
| 87 | + hf_data = _get_hf_embeddings(hf_runner, model_info, test_texts) |
| 88 | + |
| 89 | + vllm_dim = vllm_data.shape[-1] |
| 90 | + hf_dim = hf_data.shape[-1] |
| 91 | + |
| 92 | + assert vllm_dim == hf_dim, ("Embedding dim mismatch: " |
| 93 | + f"vLLM {vllm_dim} vs HF {hf_dim}") |
| 94 | + print(f"✓ Embedding dimensions match: {vllm_dim}") |
| 95 | + |
| 96 | + |
| 97 | +@pytest.mark.parametrize("model_info", ST_PROJECTOR_MODELS) |
| 98 | +def test_embedding_numerical_similarity(hf_runner, vllm_runner, |
| 99 | + model_info: EmbedModelInfo) -> None: |
| 100 | + """Numerical similarity between vLLM and HF embeddings.""" |
| 101 | + if not model_info.enable_test: |
| 102 | + pytest.skip("Skipping test.") |
| 103 | + |
| 104 | + test_texts = [ |
| 105 | + "This is a test sentence for numerical comparison.", |
| 106 | + "Another sentence to verify embedding quality.", |
| 107 | + "机器学习是人工智能的一个重要分支。", # Chinese test |
| 108 | + ] |
| 109 | + |
| 110 | + vllm_data = _get_vllm_embeddings(vllm_runner, model_info, test_texts) |
| 111 | + hf_data = _get_hf_embeddings(hf_runner, model_info, test_texts) |
| 112 | + |
| 113 | + assert vllm_data.shape == hf_data.shape, ( |
| 114 | + "Shape mismatch: " |
| 115 | + f"vLLM {vllm_data.shape} vs HF {hf_data.shape}") |
| 116 | + |
| 117 | + print(f"Embedding shape: {vllm_data.shape}") |
| 118 | + print(f"Embedding dimension: {vllm_data.shape[-1]}") |
| 119 | + |
| 120 | + similarities = [] |
| 121 | + for i, text in enumerate(test_texts): |
| 122 | + vllm_emb = vllm_data[i] |
| 123 | + hf_emb = hf_data[i] |
| 124 | + |
| 125 | + similarity = 1 - cosine(vllm_emb, hf_emb) |
| 126 | + similarities.append(similarity) |
| 127 | + |
| 128 | + preview = text[:50] + ("..." if len(text) > 50 else "") |
| 129 | + print(f"Text {i + 1}: '{preview}'") |
| 130 | + print(f" Cosine similarity: {similarity:.6f}") |
| 131 | + |
| 132 | + min_similarity = 0.95 |
| 133 | + assert similarity > min_similarity, ( |
| 134 | + f"Text {i + 1} similarity too low: " |
| 135 | + f"{similarity:.6f} < {min_similarity}\n" |
| 136 | + f"vLLM norm: {np.linalg.norm(vllm_emb):.6f}, " |
| 137 | + f"HF norm: {np.linalg.norm(hf_emb):.6f}") |
| 138 | + |
| 139 | + avg_similarity = np.mean(similarities) |
| 140 | + print(f"\nAverage cosine similarity: {avg_similarity:.6f}") |
| 141 | + |
| 142 | + assert avg_similarity > 0.98, ( |
| 143 | + f"Average similarity too low: {avg_similarity:.6f} < 0.98") |
| 144 | + print("✓ All numerical similarity tests passed!") |
| 145 | + |
| 146 | + |
| 147 | +@pytest.mark.parametrize("model_info", ST_PROJECTOR_MODELS) |
| 148 | +def test_embedding_quality_checks(vllm_runner, |
| 149 | + model_info: EmbedModelInfo) -> None: |
| 150 | + """Basic quality checks: non-zero, non-constant, distinct.""" |
| 151 | + if not model_info.enable_test: |
| 152 | + pytest.skip("Skipping test.") |
| 153 | + |
| 154 | + test_texts = [ |
| 155 | + "First test sentence.", |
| 156 | + "Second different sentence.", |
| 157 | + "Completely different content here.", |
| 158 | + ] |
| 159 | + |
| 160 | + embeddings_data = _get_vllm_embeddings(vllm_runner, model_info, test_texts) |
| 161 | + |
| 162 | + print(f"Embeddings shape: {embeddings_data.shape}") |
| 163 | + |
| 164 | + # Non-zero and non-constant |
| 165 | + for i, emb in enumerate(embeddings_data): |
| 166 | + norm = np.linalg.norm(emb) |
| 167 | + print(f"Embedding {i + 1} L2 norm: {norm:.6f}") |
| 168 | + assert norm > 1e-6, ( |
| 169 | + f"Embedding {i + 1} too close to zero: norm={norm}") |
| 170 | + |
| 171 | + std = np.std(emb) |
| 172 | + print(f"Embedding {i + 1} std: {std:.6f}") |
| 173 | + assert std > 1e-6, ( |
| 174 | + f"Embedding {i + 1} too close to constant: std={std}") |
| 175 | + |
| 176 | + # Different texts should differ |
| 177 | + for i in range(len(embeddings_data)): |
| 178 | + for j in range(i + 1, len(embeddings_data)): |
| 179 | + sim = 1 - cosine(embeddings_data[i], embeddings_data[j]) |
| 180 | + print(f"Similarity between text {i + 1} and {j + 1}: {sim:.6f}") |
| 181 | + assert sim < 0.99, ("Embeddings too similar: " |
| 182 | + f"{i + 1} vs {j + 1} -> {sim:.6f}") |
| 183 | + |
| 184 | + print("✓ All embedding quality checks passed!") |
0 commit comments