|
| 1 | +#include "cpu_types.hpp" |
| 2 | + |
| 3 | +namespace { |
| 4 | +template <typename scalar_t, vec_op::FP32Vec8 (*func)(const vec_op::FP32Vec8 &), |
| 5 | + bool is_gated> |
| 6 | +void activation_kernel(int num_tokens, int d, scalar_t *__restrict__ input, |
| 7 | + scalar_t *__restrict__ output) { |
| 8 | + using scalar_vec_t = vec_op::vec_t<scalar_t>; |
| 9 | + constexpr int VEC_ELEM_NUM = scalar_vec_t::get_elem_num(); |
| 10 | + |
| 11 | + TORCH_CHECK(d % VEC_ELEM_NUM == 0); |
| 12 | + |
| 13 | +#pragma omp parallel for |
| 14 | + for (int i = 0; i < num_tokens; ++i) { |
| 15 | + for (int j = 0; j < d; j += VEC_ELEM_NUM) { |
| 16 | + int start = i * d; |
| 17 | + if constexpr (is_gated) { |
| 18 | + start *= 2; |
| 19 | + } |
| 20 | + |
| 21 | + const scalar_vec_t x(input + start + j); |
| 22 | + const vec_op::FP32Vec8 f32_x(x); |
| 23 | + vec_op::FP32Vec8 f32_ans = func(f32_x); |
| 24 | + |
| 25 | + if constexpr (is_gated) { |
| 26 | + const scalar_vec_t y(input + start + d + j); |
| 27 | + const vec_op::FP32Vec8 f32_y(y); |
| 28 | + f32_ans = f32_y * f32_ans; |
| 29 | + } |
| 30 | + |
| 31 | + const scalar_vec_t result(f32_ans); |
| 32 | + result.save(output + i * d + j); |
| 33 | + } |
| 34 | + } |
| 35 | +} |
| 36 | + |
| 37 | +FORCE_INLINE vec_op::FP32Vec8 silu_act(const vec_op::FP32Vec8 &x) { |
| 38 | + const vec_op::FP32Vec8 zeros(0.0); |
| 39 | + const vec_op::FP32Vec8 ones(1.0); |
| 40 | + return x / (ones + (zeros - x).exp()); |
| 41 | +} |
| 42 | + |
| 43 | +FORCE_INLINE vec_op::FP32Vec8 gelu_new_act(const vec_op::FP32Vec8 &x) { |
| 44 | + const vec_op::FP32Vec8 ones(1.0); |
| 45 | + const vec_op::FP32Vec8 w1(0.79788456f); |
| 46 | + const vec_op::FP32Vec8 w2(0.044715f); |
| 47 | + const vec_op::FP32Vec8 w3(0.5); |
| 48 | + const vec_op::FP32Vec8 x3 = x * x * x; |
| 49 | + const vec_op::FP32Vec8 t = (w1 * (x + w2 * x3)).tanh(); |
| 50 | + return w3 * x * (ones + t); |
| 51 | +} |
| 52 | + |
| 53 | +FORCE_INLINE vec_op::FP32Vec8 gelu_fast_act(const vec_op::FP32Vec8 &x) { |
| 54 | + const vec_op::FP32Vec8 ones(1.0); |
| 55 | + const vec_op::FP32Vec8 w1(0.79788456f); |
| 56 | + const vec_op::FP32Vec8 w2(0.044715f); |
| 57 | + const vec_op::FP32Vec8 w3(0.5); |
| 58 | + const vec_op::FP32Vec8 t = (x * w1 * (ones + x * w2 * x)).tanh(); |
| 59 | + return w3 * x * (ones + t); |
| 60 | +} |
| 61 | + |
| 62 | +FORCE_INLINE vec_op::FP32Vec8 gelu_act(const vec_op::FP32Vec8 &x) { |
| 63 | + const vec_op::FP32Vec8 ones(1.0); |
| 64 | + const vec_op::FP32Vec8 w1(M_SQRT1_2); |
| 65 | + const vec_op::FP32Vec8 w2(0.5); |
| 66 | + return x * w2 * (ones + (x * w1).er()); |
| 67 | +} |
| 68 | + |
| 69 | +FORCE_INLINE vec_op::FP32Vec8 gelu_tanh_act(const vec_op::FP32Vec8 &x) { |
| 70 | + const vec_op::FP32Vec8 ones(1.0); |
| 71 | + const vec_op::FP32Vec8 w1(M_SQRT2 * M_2_SQRTPI * 0.5); |
| 72 | + const vec_op::FP32Vec8 w2(0.5); |
| 73 | + const vec_op::FP32Vec8 w3(0.044715); |
| 74 | + const vec_op::FP32Vec8 x_3 = x * x * x; |
| 75 | + const vec_op::FP32Vec8 inner = w1 * (x + x_3 * w3); |
| 76 | + return x * w2 * (ones + inner.tanh()); |
| 77 | +} |
| 78 | +}; // namespace |
| 79 | + |
| 80 | +void silu_and_mul(torch::Tensor &out, torch::Tensor &input) { |
| 81 | + int num_tokens = input.numel() / input.size(-1); |
| 82 | + int d = input.size(-1) / 2; |
| 83 | + |
| 84 | + VLLM_DISPATCH_FLOATING_TYPES( |
| 85 | + input.scalar_type(), "silu_and_mul_impl", [&] { |
| 86 | + CPU_KERNEL_GUARD_IN(silu_and_mul_impl) |
| 87 | + activation_kernel<scalar_t, silu_act, true>(num_tokens, d, |
| 88 | + input.data_ptr<scalar_t>(), |
| 89 | + out.data_ptr<scalar_t>()); |
| 90 | + CPU_KERNEL_GUARD_OUT(silu_and_mul_impl) |
| 91 | + }); |
| 92 | +} |
| 93 | + |
| 94 | +void gelu_and_mul(torch::Tensor &out, // [..., d] |
| 95 | + torch::Tensor &input) // [..., 2 * d] |
| 96 | +{ |
| 97 | + int num_tokens = input.numel() / input.size(-1); |
| 98 | + int d = input.size(-1) / 2; |
| 99 | + |
| 100 | + VLLM_DISPATCH_FLOATING_TYPES( |
| 101 | + input.scalar_type(), "gelu_and_mul_impl", [&] { |
| 102 | + CPU_KERNEL_GUARD_IN(gelu_and_mul_impl) |
| 103 | + activation_kernel<scalar_t, gelu_act, true>(num_tokens, d, |
| 104 | + input.data_ptr<scalar_t>(), |
| 105 | + out.data_ptr<scalar_t>()); |
| 106 | + CPU_KERNEL_GUARD_OUT(gelu_and_mul_impl) |
| 107 | + }); |
| 108 | +} |
| 109 | + |
| 110 | +void gelu_tanh_and_mul(torch::Tensor &out, // [..., d] |
| 111 | + torch::Tensor &input) // [..., 2 * d] |
| 112 | +{ |
| 113 | + int num_tokens = input.numel() / input.size(-1); |
| 114 | + int d = input.size(-1) / 2; |
| 115 | + |
| 116 | + VLLM_DISPATCH_FLOATING_TYPES( |
| 117 | + input.scalar_type(), "gelu_tanh_and_mul_impl", [&] { |
| 118 | + CPU_KERNEL_GUARD_IN(gelu_tanh_and_mul_impl) |
| 119 | + activation_kernel<scalar_t, gelu_tanh_act, true>( |
| 120 | + num_tokens, d, input.data_ptr<scalar_t>(), |
| 121 | + out.data_ptr<scalar_t>()); |
| 122 | + CPU_KERNEL_GUARD_OUT(gelu_tanh_and_mul_impl) |
| 123 | + }); |
| 124 | +} |
| 125 | + |
| 126 | +void gelu_new(torch::Tensor &out, torch::Tensor &input) { |
| 127 | + int num_tokens = input.numel() / input.size(-1); |
| 128 | + int d = input.size(-1); |
| 129 | + |
| 130 | + VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_new_impl", [&] { |
| 131 | + CPU_KERNEL_GUARD_IN(gelu_new_impl) |
| 132 | + activation_kernel<scalar_t, gelu_new_act, false>( |
| 133 | + num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>()); |
| 134 | + CPU_KERNEL_GUARD_OUT(gelu_new_impl) |
| 135 | + }); |
| 136 | +} |
| 137 | + |
| 138 | +void gelu_fast(torch::Tensor &out, torch::Tensor &input) { |
| 139 | + int num_tokens = input.numel() / input.size(-1); |
| 140 | + int d = input.size(-1); |
| 141 | + |
| 142 | + VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "gelu_fast_impl", [&] { |
| 143 | + CPU_KERNEL_GUARD_IN(gelu_fast_impl) |
| 144 | + activation_kernel<scalar_t, gelu_fast_act, false>( |
| 145 | + num_tokens, d, input.data_ptr<scalar_t>(), out.data_ptr<scalar_t>()); |
| 146 | + CPU_KERNEL_GUARD_OUT(gelu_fast_impl) |
| 147 | + }); |
| 148 | +} |
0 commit comments