|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | + |
| 4 | +import pytest |
| 5 | +import torch |
| 6 | + |
| 7 | +from tests.v1.attention.test_attention_backends import BATCH_SPECS |
| 8 | +from tests.v1.attention.utils import create_common_attn_metadata |
| 9 | +from vllm.v1.attention.backends.utils import (UbatchSlice, |
| 10 | + _make_metadata_with_slice, |
| 11 | + slice_query_start_locs, |
| 12 | + split_attn_metadata) |
| 13 | + |
| 14 | + |
| 15 | +@pytest.fixture |
| 16 | +def sample_query_start_loc(): |
| 17 | + """Sample query_start_loc tensor for testing""" |
| 18 | + return torch.tensor([0, 5, 12, 20, 35, 50]) |
| 19 | + |
| 20 | + |
| 21 | +def test_basic_slice_middle(sample_query_start_loc): |
| 22 | + """Test slicing from middle of tensor""" |
| 23 | + req_slice = slice(1, 3) # slice from index 1 to 3 |
| 24 | + result = slice_query_start_locs(sample_query_start_loc, req_slice) |
| 25 | + |
| 26 | + expected = torch.tensor([0, 7, 15]) |
| 27 | + assert torch.equal(result, expected) |
| 28 | + |
| 29 | + |
| 30 | +def test_slice_from_beginning(sample_query_start_loc): |
| 31 | + """Test slicing from the beginning of tensor""" |
| 32 | + req_slice = slice(0, 2) # slice from index 0 to 2 |
| 33 | + result = slice_query_start_locs(sample_query_start_loc, req_slice) |
| 34 | + |
| 35 | + expected = torch.tensor([0, 5, 12]) |
| 36 | + assert torch.equal(result, expected) |
| 37 | + |
| 38 | + |
| 39 | +def test_slice_to_end(sample_query_start_loc): |
| 40 | + """Test slicing to the end of tensor""" |
| 41 | + req_slice = slice(3, 5) # slice from index 3 to 5 (last index) |
| 42 | + result = slice_query_start_locs(sample_query_start_loc, req_slice) |
| 43 | + |
| 44 | + expected = torch.tensor([0, 15, 30]) |
| 45 | + assert torch.equal(result, expected) |
| 46 | + |
| 47 | + |
| 48 | +def test_single_element_slice(sample_query_start_loc): |
| 49 | + """Test slice that results in single element""" |
| 50 | + req_slice = slice(2, 3) # slice from index 2 to 3 |
| 51 | + result = slice_query_start_locs(sample_query_start_loc, req_slice) |
| 52 | + |
| 53 | + expected = torch.tensor([0, 8]) |
| 54 | + assert torch.equal(result, expected) |
| 55 | + |
| 56 | + |
| 57 | +def test_full_tensor_slice(sample_query_start_loc): |
| 58 | + """Test slicing the entire tensor""" |
| 59 | + req_slice = slice(0, 5) # slice entire tensor |
| 60 | + result = slice_query_start_locs(sample_query_start_loc, req_slice) |
| 61 | + |
| 62 | + expected = torch.tensor([0, 5, 12, 20, 35, 50]) |
| 63 | + assert torch.equal(result, expected) |
| 64 | + |
| 65 | + |
| 66 | +def test_slice_bounds_edge_cases(sample_query_start_loc): |
| 67 | + # Test slice that goes exactly to the last element |
| 68 | + req_slice = slice(4, 5) # Last index |
| 69 | + result = slice_query_start_locs(sample_query_start_loc, req_slice) |
| 70 | + |
| 71 | + expected = torch.tensor([0, 15]) |
| 72 | + assert torch.equal(result, expected) |
| 73 | + |
| 74 | + |
| 75 | +@pytest.fixture |
| 76 | +def small_decode_metadata(): |
| 77 | + """Create metadata for small decode batch""" |
| 78 | + batch_spec = BATCH_SPECS["small_decode"] |
| 79 | + device = torch.device("cpu") |
| 80 | + return create_common_attn_metadata(batch_spec, |
| 81 | + block_size=16, |
| 82 | + device=device) |
| 83 | + |
| 84 | + |
| 85 | +@pytest.fixture |
| 86 | +def large_decode_metadata(): |
| 87 | + """Create metadata for small decode batch""" |
| 88 | + batch_spec = BATCH_SPECS["large_decode"] |
| 89 | + device = torch.device("cpu") |
| 90 | + return create_common_attn_metadata(batch_spec, |
| 91 | + block_size=16, |
| 92 | + device=device) |
| 93 | + |
| 94 | + |
| 95 | +@pytest.fixture |
| 96 | +def mixed_small_metadata(): |
| 97 | + """Create metadata for mixed small batch""" |
| 98 | + batch_spec = BATCH_SPECS["mixed_small"] |
| 99 | + device = torch.device("cpu") |
| 100 | + return create_common_attn_metadata(batch_spec, |
| 101 | + block_size=16, |
| 102 | + device=device) |
| 103 | + |
| 104 | + |
| 105 | +# Tests for _make_metadata_with_slice |
| 106 | +def test_make_metadata_with_slice_decode_batch(small_decode_metadata): |
| 107 | + """Test slicing decode batch metadata""" |
| 108 | + # Split first request only |
| 109 | + ubatch_slice = UbatchSlice(slice(0, 1), slice(0, 1)) |
| 110 | + |
| 111 | + result = _make_metadata_with_slice(ubatch_slice, small_decode_metadata) |
| 112 | + |
| 113 | + # Check sliced results |
| 114 | + assert result.num_reqs == 1 # slice(0, 1) gives 1 requests |
| 115 | + assert result.num_actual_tokens == 1 # slice(0, 1) gives 1 token |
| 116 | + assert result.max_query_len == 1 |
| 117 | + assert torch.equal(result.query_start_loc, torch.tensor([0, 1])) |
| 118 | + assert torch.equal(result.seq_lens, torch.tensor([32])) |
| 119 | + |
| 120 | + |
| 121 | +def test_make_metadata_with_slice_mixed_batch(mixed_small_metadata): |
| 122 | + """Test slicing mixed batch metadata""" |
| 123 | + ubatch_slice = UbatchSlice(slice(1, 3), |
| 124 | + slice(1, 7)) # Requests 1-3, tokens 1-7 |
| 125 | + |
| 126 | + result = _make_metadata_with_slice(ubatch_slice, mixed_small_metadata) |
| 127 | + |
| 128 | + assert result.num_reqs == 2 # slice(1, 3) gives 2 requests |
| 129 | + assert result.num_actual_tokens == 6 # slice(1, 7) gives 6 tokens |
| 130 | + assert result.max_query_len == 5 |
| 131 | + assert torch.equal(result.query_start_loc, torch.tensor([0, 1, 6])) |
| 132 | + assert torch.equal(result.seq_lens, torch.tensor([40, 48])) |
| 133 | + |
| 134 | + |
| 135 | +def test_split_attn_metadata_decode_batch(large_decode_metadata): |
| 136 | + """Test splitting decode batch into two equal parts""" |
| 137 | + num_tokens = large_decode_metadata.num_reqs |
| 138 | + mid_point = num_tokens // 2 |
| 139 | + ubatch_slices = [ |
| 140 | + UbatchSlice(slice(0, mid_point), slice(0, mid_point)), |
| 141 | + UbatchSlice(slice(mid_point, num_tokens), slice(mid_point, |
| 142 | + num_tokens)), |
| 143 | + ] |
| 144 | + |
| 145 | + results = split_attn_metadata(ubatch_slices, large_decode_metadata) |
| 146 | + |
| 147 | + assert len(results) == 2 |
| 148 | + |
| 149 | + # Check first split |
| 150 | + assert results[0].num_reqs == mid_point |
| 151 | + assert results[0].num_actual_tokens == mid_point |
| 152 | + assert torch.equal(results[0].seq_lens, torch.tensor([2048] * mid_point)) |
| 153 | + |
| 154 | + # Check second split |
| 155 | + assert results[1].num_reqs == mid_point |
| 156 | + assert results[1].num_actual_tokens == mid_point |
| 157 | + assert torch.equal(results[1].seq_lens, torch.tensor([2048] * mid_point)) |
0 commit comments