|
| 1 | +import re |
| 2 | +from typing import List, Optional, Type |
| 3 | + |
| 4 | +import pytest |
| 5 | + |
| 6 | +from vllm.multimodal.utils import rescale_image_size |
| 7 | + |
| 8 | +from ..conftest import IMAGE_ASSETS, VllmRunner, _ImageAssets |
| 9 | + |
| 10 | +pytestmark = pytest.mark.vlm |
| 11 | + |
| 12 | +HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({ |
| 13 | + "stop_sign": |
| 14 | + "USER: <image>\nWhat's the content of the image?\nASSISTANT:", |
| 15 | + "cherry_blossom": |
| 16 | + "USER: <image>\nWhat is the season?\nASSISTANT:", |
| 17 | +}) |
| 18 | + |
| 19 | +models = ["facebook/chameleon-7b"] |
| 20 | + |
| 21 | + |
| 22 | +#TODO (ywang96): Add correctness test when chameleon is |
| 23 | +# available on transformers. |
| 24 | +def run_test( |
| 25 | + vllm_runner: Type[VllmRunner], |
| 26 | + image_assets: _ImageAssets, |
| 27 | + model: str, |
| 28 | + *, |
| 29 | + size_factors: List[float], |
| 30 | + dtype: str, |
| 31 | + max_tokens: int, |
| 32 | + tensor_parallel_size: int, |
| 33 | + distributed_executor_backend: Optional[str] = None, |
| 34 | +): |
| 35 | + """Test if the model can generate text given |
| 36 | + a batch of images and prompts. |
| 37 | +
|
| 38 | + """ |
| 39 | + images = [asset.pil_image for asset in image_assets] |
| 40 | + |
| 41 | + inputs_per_image = [( |
| 42 | + [prompt for _ in size_factors], |
| 43 | + [rescale_image_size(image, factor) for factor in size_factors], |
| 44 | + ) for image, prompt in zip(images, HF_IMAGE_PROMPTS)] |
| 45 | + |
| 46 | + with vllm_runner(model, |
| 47 | + max_model_len=4096, |
| 48 | + dtype=dtype, |
| 49 | + tensor_parallel_size=tensor_parallel_size, |
| 50 | + distributed_executor_backend=distributed_executor_backend, |
| 51 | + enforce_eager=True) as vllm_model: |
| 52 | + |
| 53 | + for prompts, images in inputs_per_image: |
| 54 | + vllm_outputs = vllm_model.generate_greedy(prompts, |
| 55 | + max_tokens, |
| 56 | + images=images) |
| 57 | + for i in range(len(vllm_outputs)): |
| 58 | + |
| 59 | + # format prompt back to original |
| 60 | + replacements = { |
| 61 | + "<racm3:break>": "", |
| 62 | + "<eoss>": "", |
| 63 | + "<reserved08706>": "" |
| 64 | + } |
| 65 | + pattern = '|'.join(replacements.keys()) |
| 66 | + vllm_result = re.sub( |
| 67 | + pattern, |
| 68 | + lambda match: replacements[match.group(0)], #noqa B023 |
| 69 | + vllm_outputs[i][1]) |
| 70 | + vllm_result = vllm_result.replace("<image>", "", 1023) |
| 71 | + assert vllm_result[:len(prompts[i])] == prompts[i] |
| 72 | + |
| 73 | + # assert at least 10 new characters are generated |
| 74 | + # (to take stop token into account) |
| 75 | + assert len(vllm_outputs[i][1]) - len(prompts[i]) > 10 |
| 76 | + |
| 77 | + |
| 78 | +@pytest.mark.parametrize("model", models) |
| 79 | +@pytest.mark.parametrize( |
| 80 | + "size_factors", |
| 81 | + [ |
| 82 | + # Single-scale |
| 83 | + [1.0], |
| 84 | + # Single-scale, batched |
| 85 | + [1.0, 1.0, 1.0], |
| 86 | + # Multi-scale |
| 87 | + [0.25, 0.5, 1.0], |
| 88 | + ], |
| 89 | +) |
| 90 | +@pytest.mark.parametrize("dtype", ["bfloat16"]) |
| 91 | +@pytest.mark.parametrize("max_tokens", [128]) |
| 92 | +def test_models(vllm_runner, image_assets, model, size_factors, dtype: str, |
| 93 | + max_tokens: int) -> None: |
| 94 | + run_test( |
| 95 | + vllm_runner, |
| 96 | + image_assets, |
| 97 | + model, |
| 98 | + size_factors=size_factors, |
| 99 | + dtype=dtype, |
| 100 | + max_tokens=max_tokens, |
| 101 | + tensor_parallel_size=1, |
| 102 | + ) |
0 commit comments