|
| 1 | +.. _deploying_with_dstack: |
| 2 | + |
| 3 | +Deploying with dstack |
| 4 | +============================ |
| 5 | + |
| 6 | +.. raw:: html |
| 7 | + |
| 8 | + <p align="center"> |
| 9 | + <img src="https://i.ibb.co/71kx6hW/vllm-dstack.png" alt="vLLM_plus_dstack"/> |
| 10 | + </p> |
| 11 | + |
| 12 | +vLLM can be run on a cloud based GPU machine with `dstack <https://dstack.ai/>`__, an open-source framework for running LLMs on any cloud. This tutorial assumes that you have already configured credentials, gateway, and GPU quotas on your cloud environment. |
| 13 | + |
| 14 | +To install dstack client, run: |
| 15 | + |
| 16 | +.. code-block:: console |
| 17 | +
|
| 18 | + $ pip install "dstack[all] |
| 19 | + $ dstack server |
| 20 | +
|
| 21 | +Next, to configure your dstack project, run: |
| 22 | + |
| 23 | +.. code-block:: console |
| 24 | +
|
| 25 | + $ mkdir -p vllm-dstack |
| 26 | + $ cd vllm-dstack |
| 27 | + $ dstack init |
| 28 | +
|
| 29 | +Next, to provision a VM instance with LLM of your choice(`NousResearch/Llama-2-7b-chat-hf` for this example), create the following `serve.dstack.yml` file for the dstack `Service`: |
| 30 | + |
| 31 | +.. code-block:: yaml |
| 32 | +
|
| 33 | + type: service |
| 34 | + |
| 35 | + python: "3.11" |
| 36 | + env: |
| 37 | + - MODEL=NousResearch/Llama-2-7b-chat-hf |
| 38 | + port: 8000 |
| 39 | + resources: |
| 40 | + gpu: 24GB |
| 41 | + commands: |
| 42 | + - pip install vllm |
| 43 | + - python -m vllm.entrypoints.openai.api_server --model $MODEL --port 8000 |
| 44 | + model: |
| 45 | + format: openai |
| 46 | + type: chat |
| 47 | + name: NousResearch/Llama-2-7b-chat-hf |
| 48 | +
|
| 49 | +Then, run the following CLI for provisioning: |
| 50 | + |
| 51 | +.. code-block:: console |
| 52 | +
|
| 53 | + $ dstack run . -f serve.dstack.yml |
| 54 | + |
| 55 | + ⠸ Getting run plan... |
| 56 | + Configuration serve.dstack.yml |
| 57 | + Project deep-diver-main |
| 58 | + User deep-diver |
| 59 | + Min resources 2..xCPU, 8GB.., 1xGPU (24GB) |
| 60 | + Max price - |
| 61 | + Max duration - |
| 62 | + Spot policy auto |
| 63 | + Retry policy no |
| 64 | + |
| 65 | + # BACKEND REGION INSTANCE RESOURCES SPOT PRICE |
| 66 | + 1 gcp us-central1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804 |
| 67 | + 2 gcp us-east1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804 |
| 68 | + 3 gcp us-west1 g2-standard-4 4xCPU, 16GB, 1xL4 (24GB), 100GB (disk) yes $0.223804 |
| 69 | + ... |
| 70 | + Shown 3 of 193 offers, $5.876 max |
| 71 | + |
| 72 | + Continue? [y/n]: y |
| 73 | + ⠙ Submitting run... |
| 74 | + ⠏ Launching spicy-treefrog-1 (pulling) |
| 75 | + spicy-treefrog-1 provisioning completed (running) |
| 76 | + Service is published at ... |
| 77 | +
|
| 78 | +After the provisioning, you can interact with the model by using the OpenAI SDK: |
| 79 | + |
| 80 | +.. code-block:: python |
| 81 | +
|
| 82 | + from openai import OpenAI |
| 83 | + |
| 84 | + client = OpenAI( |
| 85 | + base_url="https://gateway.<gateway domain>", |
| 86 | + api_key="<YOUR-DSTACK-SERVER-ACCESS-TOKEN>" |
| 87 | + ) |
| 88 | + |
| 89 | + completion = client.chat.completions.create( |
| 90 | + model="NousResearch/Llama-2-7b-chat-hf", |
| 91 | + messages=[ |
| 92 | + { |
| 93 | + "role": "user", |
| 94 | + "content": "Compose a poem that explains the concept of recursion in programming.", |
| 95 | + } |
| 96 | + ] |
| 97 | + ) |
| 98 | +
|
| 99 | + print(completion.choices[0].message.content) |
| 100 | +
|
| 101 | +.. note:: |
| 102 | + |
| 103 | + dstack automatically handles authentication on the gateway using dstack's tokens. Meanwhile, if you don't want to configure a gateway, you can provision dstack `Task` instead of `Service`. The `Task` is for development purpose only. If you want to know more about hands-on materials how to serve vLLM using dstack, check out `this repository <https://github.com/dstackai/dstack-examples/tree/main/deployment/vllm>`__ |
0 commit comments