|
| 1 | +import os |
| 2 | +from typing import TYPE_CHECKING, Any, Callable, Dict, Optional |
| 3 | + |
| 4 | +if TYPE_CHECKING: |
| 5 | + VLLM_HOST_IP: str = "" |
| 6 | + VLLM_USE_MODELSCOPE: bool = False |
| 7 | + VLLM_INSTANCE_ID: Optional[str] = None |
| 8 | + VLLM_NCCL_SO_PATH: Optional[str] = None |
| 9 | + LD_LIBRARY_PATH: Optional[str] = None |
| 10 | + VLLM_USE_TRITON_FLASH_ATTN: bool = False |
| 11 | + LOCAL_RANK: int = 0 |
| 12 | + CUDA_VISIBLE_DEVICES: Optional[str] = None |
| 13 | + VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60 |
| 14 | + VLLM_API_KEY: Optional[str] = None |
| 15 | + S3_ACCESS_KEY_ID: Optional[str] = None |
| 16 | + S3_SECRET_ACCESS_KEY: Optional[str] = None |
| 17 | + S3_ENDPOINT_URL: Optional[str] = None |
| 18 | + VLLM_CONFIG_ROOT: str = "" |
| 19 | + VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai" |
| 20 | + VLLM_NO_USAGE_STATS: bool = False |
| 21 | + VLLM_DO_NOT_TRACK: bool = False |
| 22 | + VLLM_USAGE_SOURCE: str = "" |
| 23 | + VLLM_CONFIGURE_LOGGING: int = 1 |
| 24 | + VLLM_LOGGING_CONFIG_PATH: Optional[str] = None |
| 25 | + VLLM_TRACE_FUNCTION: int = 0 |
| 26 | + VLLM_ATTENTION_BACKEND: Optional[str] = None |
| 27 | + VLLM_CPU_KVCACHE_SPACE: int = 0 |
| 28 | + VLLM_USE_RAY_COMPILED_DAG: bool = False |
| 29 | + VLLM_WORKER_MULTIPROC_METHOD: str = "spawn" |
| 30 | + |
| 31 | +environment_variables: Dict[str, Callable[[], Any]] = { |
| 32 | + # used in distributed environment to determine the master address |
| 33 | + 'VLLM_HOST_IP': |
| 34 | + lambda: os.getenv('VLLM_HOST_IP', "") or os.getenv("HOST_IP", ""), |
| 35 | + |
| 36 | + # If true, will load models from ModelScope instead of Hugging Face Hub. |
| 37 | + # note that the value is true or false, not numbers |
| 38 | + "VLLM_USE_MODELSCOPE": |
| 39 | + lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true", |
| 40 | + |
| 41 | + # Instance id represents an instance of the VLLM. All processes in the same |
| 42 | + # instance should have the same instance id. |
| 43 | + "VLLM_INSTANCE_ID": |
| 44 | + lambda: os.environ.get("VLLM_INSTANCE_ID", None), |
| 45 | + |
| 46 | + # path to cudatoolkit home directory, under which should be bin, include, |
| 47 | + # and lib directories. |
| 48 | + "CUDA_HOME": |
| 49 | + lambda: os.environ.get("CUDA_HOME", None), |
| 50 | + |
| 51 | + # Path to the NCCL library file. It is needed because nccl>=2.19 brought |
| 52 | + # by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234 |
| 53 | + "VLLM_NCCL_SO_PATH": |
| 54 | + lambda: os.environ.get("VLLM_NCCL_SO_PATH", None), |
| 55 | + |
| 56 | + # when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl |
| 57 | + # library file in the locations specified by `LD_LIBRARY_PATH` |
| 58 | + "LD_LIBRARY_PATH": |
| 59 | + lambda: os.environ.get("LD_LIBRARY_PATH", None), |
| 60 | + |
| 61 | + # flag to control if vllm should use triton flash attention |
| 62 | + "VLLM_USE_TRITON_FLASH_ATTN": |
| 63 | + lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in |
| 64 | + ("true", "1")), |
| 65 | + |
| 66 | + # local rank of the process in the distributed setting, used to determine |
| 67 | + # the GPU device id |
| 68 | + "LOCAL_RANK": |
| 69 | + lambda: int(os.environ.get("LOCAL_RANK", "0")), |
| 70 | + |
| 71 | + # used to control the visible devices in the distributed setting |
| 72 | + "CUDA_VISIBLE_DEVICES": |
| 73 | + lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None), |
| 74 | + |
| 75 | + # timeout for each iteration in the engine |
| 76 | + "VLLM_ENGINE_ITERATION_TIMEOUT_S": |
| 77 | + lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")), |
| 78 | + |
| 79 | + # API key for VLLM API server |
| 80 | + "VLLM_API_KEY": |
| 81 | + lambda: os.environ.get("VLLM_API_KEY", None), |
| 82 | + |
| 83 | + # S3 access information, used for tensorizer to load model from S3 |
| 84 | + "S3_ACCESS_KEY_ID": |
| 85 | + lambda: os.environ.get("S3_ACCESS_KEY", None), |
| 86 | + "S3_SECRET_ACCESS_KEY": |
| 87 | + lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None), |
| 88 | + "S3_ENDPOINT_URL": |
| 89 | + lambda: os.environ.get("S3_ENDPOINT_URL", None), |
| 90 | + |
| 91 | + # Root directory for VLLM configuration files |
| 92 | + # Note that this not only affects how vllm finds its configuration files |
| 93 | + # during runtime, but also affects how vllm installs its configuration |
| 94 | + # files during **installation**. |
| 95 | + "VLLM_CONFIG_ROOT": |
| 96 | + lambda: os.environ.get("VLLM_CONFIG_ROOT", None) or os.getenv( |
| 97 | + "XDG_CONFIG_HOME", None) or os.path.expanduser("~/.config"), |
| 98 | + |
| 99 | + # Usage stats collection |
| 100 | + "VLLM_USAGE_STATS_SERVER": |
| 101 | + lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"), |
| 102 | + "VLLM_NO_USAGE_STATS": |
| 103 | + lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1", |
| 104 | + "VLLM_DO_NOT_TRACK": |
| 105 | + lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get( |
| 106 | + "DO_NOT_TRACK", None) or "0") == "1", |
| 107 | + "VLLM_USAGE_SOURCE": |
| 108 | + lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"), |
| 109 | + |
| 110 | + # Logging configuration |
| 111 | + # If set to 0, vllm will not configure logging |
| 112 | + # If set to 1, vllm will configure logging using the default configuration |
| 113 | + # or the configuration file specified by VLLM_LOGGING_CONFIG_PATH |
| 114 | + "VLLM_CONFIGURE_LOGGING": |
| 115 | + lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")), |
| 116 | + "VLLM_LOGGING_CONFIG_PATH": |
| 117 | + lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"), |
| 118 | + |
| 119 | + # Trace function calls |
| 120 | + # If set to 1, vllm will trace function calls |
| 121 | + # Useful for debugging |
| 122 | + "VLLM_TRACE_FUNCTION": |
| 123 | + lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")), |
| 124 | + |
| 125 | + # Backend for attention computation |
| 126 | + # Available options: |
| 127 | + # - "TORCH_SDPA": use torch.nn.MultiheadAttention |
| 128 | + # - "FLASH_ATTN": use FlashAttention |
| 129 | + # - "XFORMERS": use XFormers |
| 130 | + # - "ROCM_FLASH": use ROCmFlashAttention |
| 131 | + "VLLM_ATTENTION_BACKEND": |
| 132 | + lambda: os.getenv("VLLM_ATTENTION_BACKEND", None), |
| 133 | + |
| 134 | + # CPU key-value cache space |
| 135 | + # default is 4GB |
| 136 | + "VLLM_CPU_KVCACHE_SPACE": |
| 137 | + lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0")), |
| 138 | + |
| 139 | + # If the env var is set, it uses the Ray's compiled DAG API |
| 140 | + # which optimizes the control plane overhead. |
| 141 | + # Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it. |
| 142 | + "VLLM_USE_RAY_COMPILED_DAG": |
| 143 | + lambda: bool(os.getenv("VLLM_USE_RAY_COMPILED_DAG", 0)), |
| 144 | + |
| 145 | + # Use dedicated multiprocess context for workers. |
| 146 | + # Both spawn and fork work |
| 147 | + "VLLM_WORKER_MULTIPROC_METHOD": |
| 148 | + lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "spawn"), |
| 149 | +} |
| 150 | + |
| 151 | + |
| 152 | +def __getattr__(name): |
| 153 | + # lazy evaluation of environment variables |
| 154 | + if name in environment_variables: |
| 155 | + return environment_variables[name]() |
| 156 | + raise AttributeError(f"module {__name__!r} has no attribute {name!r}") |
| 157 | + |
| 158 | + |
| 159 | +def __dir__(): |
| 160 | + return list(environment_variables.keys()) |
0 commit comments