|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | +# SPDX-FileCopyrightText: Copyright contributors to the vLLM project |
| 3 | +""" |
| 4 | +Simple example demonstrating streaming offline inference with AsyncLLM (V1 engine). |
| 5 | +
|
| 6 | +This script shows the core functionality of vLLM's AsyncLLM engine for streaming |
| 7 | +token-by-token output in offline inference scenarios. It demonstrates DELTA mode |
| 8 | +streaming where you receive new tokens as they are generated. |
| 9 | +
|
| 10 | +Usage: |
| 11 | + python examples/offline_inference/async_llm_streaming.py |
| 12 | +""" |
| 13 | + |
| 14 | +import asyncio |
| 15 | + |
| 16 | +from vllm import SamplingParams |
| 17 | +from vllm.engine.arg_utils import AsyncEngineArgs |
| 18 | +from vllm.sampling_params import RequestOutputKind |
| 19 | +from vllm.v1.engine.async_llm import AsyncLLM |
| 20 | + |
| 21 | + |
| 22 | +async def stream_response(engine: AsyncLLM, prompt: str, request_id: str) -> None: |
| 23 | + """ |
| 24 | + Stream response from AsyncLLM and display tokens as they arrive. |
| 25 | +
|
| 26 | + This function demonstrates the core streaming pattern: |
| 27 | + 1. Create SamplingParams with DELTA output kind |
| 28 | + 2. Call engine.generate() and iterate over the async generator |
| 29 | + 3. Print new tokens as they arrive |
| 30 | + 4. Handle the finished flag to know when generation is complete |
| 31 | + """ |
| 32 | + print(f"\n🚀 Prompt: {prompt!r}") |
| 33 | + print("💬 Response: ", end="", flush=True) |
| 34 | + |
| 35 | + # Configure sampling parameters for streaming |
| 36 | + sampling_params = SamplingParams( |
| 37 | + max_tokens=100, |
| 38 | + temperature=0.8, |
| 39 | + top_p=0.95, |
| 40 | + seed=42, # For reproducible results |
| 41 | + output_kind=RequestOutputKind.DELTA, # Get only new tokens each iteration |
| 42 | + ) |
| 43 | + |
| 44 | + try: |
| 45 | + # Stream tokens from AsyncLLM |
| 46 | + async for output in engine.generate( |
| 47 | + request_id=request_id, prompt=prompt, sampling_params=sampling_params |
| 48 | + ): |
| 49 | + # Process each completion in the output |
| 50 | + for completion in output.outputs: |
| 51 | + # In DELTA mode, we get only new tokens generated since last iteration |
| 52 | + new_text = completion.text |
| 53 | + if new_text: |
| 54 | + print(new_text, end="", flush=True) |
| 55 | + |
| 56 | + # Check if generation is finished |
| 57 | + if output.finished: |
| 58 | + print("\n✅ Generation complete!") |
| 59 | + break |
| 60 | + |
| 61 | + except Exception as e: |
| 62 | + print(f"\n❌ Error during streaming: {e}") |
| 63 | + raise |
| 64 | + |
| 65 | + |
| 66 | +async def main(): |
| 67 | + print("🔧 Initializing AsyncLLM...") |
| 68 | + |
| 69 | + # Create AsyncLLM engine with simple configuration |
| 70 | + engine_args = AsyncEngineArgs( |
| 71 | + model="meta-llama/Llama-3.2-1B-Instruct", |
| 72 | + enforce_eager=True, # Faster startup for examples |
| 73 | + ) |
| 74 | + engine = AsyncLLM.from_engine_args(engine_args) |
| 75 | + |
| 76 | + try: |
| 77 | + # Example prompts to demonstrate streaming |
| 78 | + prompts = [ |
| 79 | + "The future of artificial intelligence is", |
| 80 | + "In a galaxy far, far away", |
| 81 | + "The key to happiness is", |
| 82 | + ] |
| 83 | + |
| 84 | + print(f"🎯 Running {len(prompts)} streaming examples...") |
| 85 | + |
| 86 | + # Process each prompt |
| 87 | + for i, prompt in enumerate(prompts, 1): |
| 88 | + print(f"\n{'=' * 60}") |
| 89 | + print(f"Example {i}/{len(prompts)}") |
| 90 | + print(f"{'=' * 60}") |
| 91 | + |
| 92 | + request_id = f"stream-example-{i}" |
| 93 | + await stream_response(engine, prompt, request_id) |
| 94 | + |
| 95 | + # Brief pause between examples |
| 96 | + if i < len(prompts): |
| 97 | + await asyncio.sleep(0.5) |
| 98 | + |
| 99 | + print("\n🎉 All streaming examples completed!") |
| 100 | + |
| 101 | + finally: |
| 102 | + # Always clean up the engine |
| 103 | + print("🔧 Shutting down engine...") |
| 104 | + engine.shutdown() |
| 105 | + |
| 106 | + |
| 107 | +if __name__ == "__main__": |
| 108 | + try: |
| 109 | + asyncio.run(main()) |
| 110 | + except KeyboardInterrupt: |
| 111 | + print("\n🛑 Interrupted by user") |
0 commit comments