Skip to content

Commit b9cecc2

Browse files
authored
[Docs] Update installation page (#1005)
1 parent 898285c commit b9cecc2

File tree

1 file changed

+11
-19
lines changed

1 file changed

+11
-19
lines changed

docs/source/getting_started/installation.rst

Lines changed: 11 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -3,31 +3,15 @@
33
Installation
44
============
55

6-
vLLM is a Python library that also contains some C++ and CUDA code.
7-
This additional code requires compilation on the user's machine.
6+
vLLM is a Python library that also contains pre-compiled C++ and CUDA (11.8) binaries.
87

98
Requirements
109
------------
1110

1211
* OS: Linux
13-
* Python: 3.8 or higher
14-
* CUDA: 11.0 -- 11.8
12+
* Python: 3.8 -- 3.11
1513
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
1614

17-
.. note::
18-
As of now, vLLM does not support CUDA 12.
19-
If you are using Hopper or Lovelace GPUs, please use CUDA 11.8 instead of CUDA 12.
20-
21-
.. tip::
22-
If you have trouble installing vLLM, we recommend using the NVIDIA PyTorch Docker image.
23-
24-
.. code-block:: console
25-
26-
$ # Pull the Docker image with CUDA 11.8.
27-
$ docker run --gpus all -it --rm --shm-size=8g nvcr.io/nvidia/pytorch:22.12-py3
28-
29-
Inside the Docker container, please execute :code:`pip uninstall torch` before installing vLLM.
30-
3115
Install with pip
3216
----------------
3317

@@ -40,7 +24,7 @@ You can install vLLM using pip:
4024
$ conda activate myenv
4125
4226
$ # Install vLLM.
43-
$ pip install vllm # This may take 5-10 minutes.
27+
$ pip install vllm
4428
4529
4630
.. _build_from_source:
@@ -55,3 +39,11 @@ You can also build and install vLLM from source:
5539
$ git clone https://github.com/vllm-project/vllm.git
5640
$ cd vllm
5741
$ pip install -e . # This may take 5-10 minutes.
42+
43+
.. tip::
44+
If you have trouble building vLLM, we recommend using the NVIDIA PyTorch Docker image.
45+
46+
.. code-block:: console
47+
48+
$ # Pull the Docker image with CUDA 11.8.
49+
$ docker run --gpus all -it --rm --shm-size=8g nvcr.io/nvidia/pytorch:22.12-py3

0 commit comments

Comments
 (0)