|
3 | 3 | Run `pytest tests/models/test_mamba.py`. |
4 | 4 | """ |
5 | 5 | import pytest |
6 | | -from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline |
7 | | -import torch |
| 6 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
8 | 7 |
|
9 | 8 | from .utils import check_outputs_equal |
10 | 9 |
|
11 | 10 | MODELS = [ |
12 | 11 | "state-spaces/mamba-370m-hf", |
13 | 12 | ] |
14 | 13 |
|
| 14 | + |
15 | 15 | # Use lower-level interfaces to create this greedy generator, as mamba will |
16 | 16 | # choke on the model_kwarg 'attention_mask' if hf_model.generate_greedy is used. |
17 | 17 | def generate_greedy(model_name, example_prompts, max_tokens): |
18 | 18 | # Create a text generation pipeline |
19 | 19 | tokenizer = AutoTokenizer.from_pretrained(model_name) |
20 | 20 | model = AutoModelForCausalLM.from_pretrained(model_name) |
21 | 21 |
|
22 | | - generator = TextGenerationPipeline(model=model, tokenizer=tokenizer, |
23 | | - device=torch.cuda.current_device() |
24 | | - if torch.cuda.is_available() else -1) |
25 | | - |
26 | 22 | # Generate texts from the prompts |
27 | 23 | outputs = [] |
28 | 24 | for prompt in example_prompts: |
29 | 25 | # Tokenize the input prompt with truncation |
30 | 26 | inputs = tokenizer(prompt, return_tensors="pt", truncation=True) |
31 | 27 | input_ids = inputs["input_ids"].to(model.device) |
32 | | - |
| 28 | + |
33 | 29 | # Generate text using the model's generate method directly |
34 | 30 | generated_ids = model.generate(input_ids, max_new_tokens=max_tokens) |
35 | | - generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) |
| 31 | + generated_text = tokenizer.decode(generated_ids[0], |
| 32 | + skip_special_tokens=True) |
36 | 33 |
|
37 | 34 | outputs.append((generated_ids[0].tolist(), generated_text)) |
38 | 35 |
|
39 | 36 | return outputs |
40 | 37 |
|
| 38 | + |
41 | 39 | @pytest.mark.parametrize("model", MODELS) |
42 | 40 | @pytest.mark.parametrize("dtype", ["float"]) |
43 | 41 | @pytest.mark.parametrize("max_tokens", [96]) |
|
0 commit comments