-
-
Notifications
You must be signed in to change notification settings - Fork 10.5k
Open
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity
Description
Your current environment
The output of `python collect_env.py`
INFO 04-15 02:56:47 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A
OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.16.3
Libc version: glibc-2.31
Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct 4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1086-azure-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.6.85
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB
Nvidia driver version: 550.90.07
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 23
Model: 49
Model name: AMD EPYC 7V12 64-Core Processor
Stepping: 0
CPU MHz: 3108.517
BogoMIPS: 4890.88
Hypervisor vendor: Microsoft
Virtualization type: full
L1d cache: 3 MiB
L1i cache: 3 MiB
L2 cache: 48 MiB
L3 cache: 384 MiB
NUMA node0 CPU(s): 0-23
NUMA node1 CPU(s): 24-47
NUMA node2 CPU(s): 48-71
NUMA node3 CPU(s): 72-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow: Mitigation; safe RET, no microcode
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip rdpid
Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.50.0.dev0
[pip3] triton==3.2.0
[pip3] zmq==0.0.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.4.5.8 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.1.0.70 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.2.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.5.147 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.6.1.9 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.3.1.170 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.2 pypi_0 pypi
[conda] nvidia-ml-py 12.560.30 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.21.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.4.127 pypi_0 pypi
[conda] pyzmq 26.2.0 pypi_0 pypi
[conda] torch 2.6.0 pypi_0 pypi
[conda] torchaudio 2.6.0 pypi_0 pypi
[conda] torchvision 0.21.0 pypi_0 pypi
[conda] transformers 4.50.0.dev0 pypi_0 pypi
[conda] triton 3.2.0 pypi_0 pypi
[conda] zmq 0.0.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
�[4mGPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 NIC0 NIC1 NIC2 NIC3 NIC4 NIC5 NIC6 NIC7 NIC8 CPU Affinity NUMA Affinity GPU NUMA ID�[0m
GPU0 X NV12 NV12 NV12 NV12 NV12 NV12 NV12 NODE NODE SYS SYS SYS SYS SYS SYS SYS 24-47 1 N/A
GPU1 NV12 X NV12 NV12 NV12 NV12 NV12 NV12 NODE NODE SYS SYS SYS SYS SYS SYS SYS 24-47 1 N/A
GPU2 NV12 NV12 X NV12 NV12 NV12 NV12 NV12 SYS SYS NODE NODE SYS SYS SYS SYS NODE 0-23 0 N/A
GPU3 NV12 NV12 NV12 X NV12 NV12 NV12 NV12 SYS SYS NODE NODE SYS SYS SYS SYS NODE 0-23 0 N/A
GPU4 NV12 NV12 NV12 NV12 X NV12 NV12 NV12 SYS SYS SYS SYS NODE NODE SYS SYS SYS 72-95 3 N/A
GPU5 NV12 NV12 NV12 NV12 NV12 X NV12 NV12 SYS SYS SYS SYS NODE NODE SYS SYS SYS 72-95 3 N/A
GPU6 NV12 NV12 NV12 NV12 NV12 NV12 X NV12 SYS SYS SYS SYS SYS SYS NODE NODE SYS 48-71 2 N/A
GPU7 NV12 NV12 NV12 NV12 NV12 NV12 NV12 X SYS SYS SYS SYS SYS SYS NODE NODE SYS 48-71 2 N/A
NIC0 NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS SYS SYS SYS SYS SYS
NIC1 NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS SYS SYS SYS SYS SYS
NIC2 SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS SYS SYS NODE
NIC3 SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS SYS SYS NODE
NIC4 SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS SYS SYS
NIC5 SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS SYS SYS
NIC6 SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS X NODE SYS
NIC7 SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE X SYS
NIC8 SYS SYS NODE NODE SYS SYS SYS SYS SYS SYS NODE NODE SYS SYS SYS SYS X
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
NIC Legend:
NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3
NIC4: mlx5_4
NIC5: mlx5_5
NIC6: mlx5_6
NIC7: mlx5_7
NIC8: mlx5_8
LD_LIBRARY_PATH=:/usr/local/cuda/lib64
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
I am noticing an issue when using Gemma-3-27B (and other multimodal models like NVLM-D-72B as well). I am running with TP=4 with 4 A100 GPUs in a single node using NVLink.
I have an inference request that has around 30 images.
I notice that it takes a long time (about 1.5 mins) to complete. However during this time, mostly the GPUs are idle. The main thing that is happening is that the host DRAM usage is slowly increasing. I enabled vLLM tracing to figure out what was going on and there is a large window of time (about 30s) where there is no function call and the code is waiting on acquire_read in shm_broadcast.py. I am attaching the relevant code snippets below.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity