Skip to content

[Usage]: Unable to load Mistral-Small-3.2-24B-Instruct-2506-FP8 due to "Value error, Found unknown quantization", but the same configs worked for vllm v0.11.0 #34028

@gabinguo

Description

@gabinguo

Your current environment

python collect_env.py
--2026-02-06 23:27:52--  https://raw.githubusercontent.com/vllm-project/vllm/main/vllm/collect_env.py
Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 27835 (27K) [text/plain]
Saving to: ‘collect_env.py’

collect_env.py                                                  100%[=====================================================================================================================================================>]  27.18K  --.-KB/s    in 0.001s  

2026-02-06 23:27:52 (37.3 MB/s) - ‘collect_env.py’ saved [27835/27835]

Collecting environment information...
uv is set
==============================
        System Info
==============================
OS                           : Rocky Linux 9.7 (Blue Onyx) (x86_64)
GCC version                  : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-11)
Clang version                : Could not collect
CMake version                : Could not collect
Libc version                 : glibc-2.34

==============================
       PyTorch Info
==============================
PyTorch version              : 2.9.1+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.5 (main, Aug 14 2024, 05:08:31) [Clang 18.1.8 ] (64-bit runtime)
Python platform              : Linux-6.8.0-90-generic-x86_64-with-glibc2.34

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.93
CUDA_MODULE_LOADING set to   : 
GPU models and configuration : GPU 0: NVIDIA L40S
Nvidia driver version        : 550.127.08
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               8
On-line CPU(s) list:                  0-7
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7413 24-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   1
Core(s) per socket:                   8
Socket(s):                            1
Stepping:                             1
BogoMIPS:                             5300.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor fsrm arch_capabilities
Virtualization:                       AMD-V
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            512 KiB (8 instances)
L1i cache:                            512 KiB (8 instances)
L2 cache:                             4 MiB (8 instances)
L3 cache:                             128 MiB (8 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-7
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Vulnerability Vmscape:                Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.6.1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.18.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.3.5
[pip3] nvidia-ml-py==13.590.48
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.9.1
[pip3] torchaudio==2.9.1
[pip3] torchvision==0.24.1
[pip3] transformers==4.57.6
[pip3] triton==3.5.1
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.15.1
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
  	GPU0	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	0-7	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.8 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566
NCCL_VERSION=2.25.1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
CUDA_VERSION=12.8.1
VLLM_CONFIGURE_LOGGING=1
LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib64
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1

How would you like to use vllm

Hey !

I am encountering this issue using v0.15.1, have we changed the way we load models in v0.15.1?

Thanks in advance for your help!


(APIServer pid=44) INFO 02-06 23:24:30 [utils.py:325] 
(APIServer pid=44) INFO 02-06 23:24:30 [utils.py:325]        █     █     █▄   ▄█
(APIServer pid=44) INFO 02-06 23:24:30 [utils.py:325]  ▄▄ ▄█ █     █     █ ▀▄▀ █  version 0.15.1
(APIServer pid=44) INFO 02-06 23:24:30 [utils.py:325]   █▄█▀ █     █     █     █  model   stelterlab/Mistral-Small-3.2-24B-Instruct-2506-FP8
(APIServer pid=44) INFO 02-06 23:24:30 [utils.py:325]    ▀▀  ▀▀▀▀▀ ▀▀▀▀▀ ▀     ▀
(APIServer pid=44) INFO 02-06 23:24:30 [utils.py:325] 
(APIServer pid=44) INFO 02-06 23:24:30 [utils.py:261] non-default args: {'model_tag': 'stelterlab/Mistral-Small-3.2-24B-Instruct-2506-FP8', 'api_server_count': 1, 'host': '0.0.0.0', 'port': 30000, 'enable_auto_tool_choice': True, 'tool_call_parser': 'mistral', 'model': 'stelterlab/Mistral-Small-3.2-24B-Instruct-2506-FP8', 'tokenizer_mode': 'mistral', 'dtype': 'bfloat16', 'max_model_len': 32768, 'served_model_name': ['mistral-llm'], 'config_format': 'mistral', 'hf_token': 'XXXXX', 'load_format': 'mistral', 'gpu_memory_utilization': 0.7, 'limit_mm_per_prompt': {'image': 4}, 'max_num_seqs': 10}
(APIServer pid=44) WARNING 02-06 23:24:30 [system_utils.py:266] Found ulimit of 32768 and failed to automatically increase with error current limit exceeds maximum limit. This can cause fd limit errors like `OSError: [Errno 24] Too many open files`. Consider increasing with ulimit -n
(APIServer pid=44) Traceback (most recent call last):
(APIServer pid=44)   File "/app/.venv/bin/vllm", line 10, in <module>
(APIServer pid=44)     sys.exit(main())
(APIServer pid=44)              ^^^^^^
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/vllm/entrypoints/cli/main.py", line 73, in main
(APIServer pid=44)     args.dispatch_function(args)
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/vllm/entrypoints/cli/serve.py", line 111, in cmd
(APIServer pid=44)     uvloop.run(run_server(args))
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/uvloop/__init__.py", line 96, in run
(APIServer pid=44)     return __asyncio.run(
(APIServer pid=44)            ^^^^^^^^^^^^^^
(APIServer pid=44)   File "/root/.local/share/uv/python/cpython-3.12.5-linux-x86_64-gnu/lib/python3.12/asyncio/runners.py", line 194, in run
(APIServer pid=44)     return runner.run(main)
(APIServer pid=44)            ^^^^^^^^^^^^^^^^
(APIServer pid=44)   File "/root/.local/share/uv/python/cpython-3.12.5-linux-x86_64-gnu/lib/python3.12/asyncio/runners.py", line 118, in run
(APIServer pid=44)     return self._loop.run_until_complete(task)
(APIServer pid=44)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=44)   File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/uvloop/__init__.py", line 48, in wrapper
(APIServer pid=44)     return await main
(APIServer pid=44)            ^^^^^^^^^^
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 919, in run_server
(APIServer pid=44)     await run_server_worker(listen_address, sock, args, **uvicorn_kwargs)
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 938, in run_server_worker
(APIServer pid=44)     async with build_async_engine_client(
(APIServer pid=44)   File "/root/.local/share/uv/python/cpython-3.12.5-linux-x86_64-gnu/lib/python3.12/contextlib.py", line 210, in __aenter__
(APIServer pid=44)     return await anext(self.gen)
(APIServer pid=44)            ^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 147, in build_async_engine_client
(APIServer pid=44)     async with build_async_engine_client_from_engine_args(
(APIServer pid=44)   File "/root/.local/share/uv/python/cpython-3.12.5-linux-x86_64-gnu/lib/python3.12/contextlib.py", line 210, in __aenter__
(APIServer pid=44)     return await anext(self.gen)
(APIServer pid=44)            ^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/vllm/entrypoints/openai/api_server.py", line 173, in build_async_engine_client_from_engine_args
(APIServer pid=44)     vllm_config = engine_args.create_engine_config(usage_context=usage_context)
(APIServer pid=44)                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/vllm/engine/arg_utils.py", line 1374, in create_engine_config
(APIServer pid=44)     model_config = self.create_model_config()
(APIServer pid=44)                    ^^^^^^^^^^^^^^^^^^^^^^^^^^
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/vllm/engine/arg_utils.py", line 1228, in create_model_config
(APIServer pid=44)     return ModelConfig(
(APIServer pid=44)            ^^^^^^^^^^^^
(APIServer pid=44)   File "/app/.venv/lib/python3.12/site-packages/pydantic/_internal/_dataclasses.py", line 121, in __init__
(APIServer pid=44)     s.__pydantic_validator__.validate_python(ArgsKwargs(args, kwargs), self_instance=s)
(APIServer pid=44) pydantic_core._pydantic_core.ValidationError: 1 validation error for ModelConfig
(APIServer pid=44)   Value error, Found unknown quantization='{'config_groups': {'group_0': {'input_activations': {'dynamic': True, 'num_bits': 8, 'observer': None, 'strategy': 'token', 'symmetric': True, 'type': 'float'}, 'targets': ['Linear'], 'weights': {'dynamic': False, 'num_bits': 8, 'observer': 'minmax', 'strategy': 'tensor', 'symmetric': True, 'type': 'float'}}}, 'format': 'float-quantized', 'ignore': ['lm_head', 'output'], 'quant_method': 'compressed-tensors', 'quantization_status': 'compressed'}' in config [type=value_error, input_value=ArgsKwargs((), {'model': ...rocessor_plugin': None}), input_type=ArgsKwargs]
(APIServer pid=44)     For further information visit https://errors.pydantic.dev/2.12/v/value_error

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    usageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions