Skip to content

Commit f091d54

Browse files
JesseStutlersuyiiyii
authored andcommitted
Change the discription of background of multi cluster scheduling
Signed-off-by: JesseStutler <[email protected]> Signed-off-by: suyiiyii <[email protected]>
1 parent e9f6b72 commit f091d54

File tree

6 files changed

+30
-18
lines changed

6 files changed

+30
-18
lines changed

content/en/docs/multi_cluster_scheduling.md

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,9 +17,13 @@ type = "docs" # Do not modify.
1717

1818
## Background
1919

20-
With the rapid growth of enterprise business, a single Kubernetes cluster often cannot meet the demands of large-scale AI training and inference tasks. Users typically need to manage multiple Kubernetes clusters to achieve unified workload distribution, deployment, and management. Currently, multi-cluster orchestration systems in the industry (such as [Karmada](https://karmada.io/)) primarily target microservices scenarios, providing high availability and disaster recovery deployment capabilities. However, in terms of AI job scheduling, Karmada's capabilities are still limited. It lacks support for **Volcano Job** and cannot meet requirements such as queue management, multi-tenant fair scheduling, and job priority scheduling.
21-
22-
To address the scheduling and management challenges of AI jobs in a multi-cluster environment, the **Volcano community** has incubated the **[Volcano Global](https://github.com/volcano-sh/volcano-global)** sub-project. Based on Karmada, this project extends Volcano's powerful scheduling capabilities in single clusters, providing a unified scheduling platform for multi-cluster AI jobs. It supports cross-cluster task distribution, resource management, and priority control.
20+
With the rapid growth of enterprise business, a single Kubernetes cluster often cannot meet the demands of large-scale AI training and inference tasks.
21+
Users typically need to manage multiple Kubernetes clusters to achieve unified AI workload distribution, deployment, and management.
22+
Currently, many users are running Volcano across multiple clusters and using [Karmada](https://github.com/karmada-io/karmada) for management.
23+
To better support AI tasks in multi-cluster environments with features such as global queue management, task priority, and fair scheduling,
24+
the Volcano community has incubated the [Volcano Global](https://github.com/volcano-sh/volcano-global) sub-project.
25+
This project extends Volcano's scheduling capabilities from single clusters to multi-cluster scenarios, providing a unified scheduling platform for multi-cluster AI tasks.
26+
It supports cross-cluster task distribution, resource management, and priority control.
2327

2428
## Features
2529

content/en/docs/v1-11-0/multi_cluster_scheduling.md

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,9 +17,13 @@ type = "docs" # Do not modify.
1717

1818
## Background
1919

20-
With the rapid growth of enterprise business, a single Kubernetes cluster often cannot meet the demands of large-scale AI training and inference tasks. Users typically need to manage multiple Kubernetes clusters to achieve unified workload distribution, deployment, and management. Currently, multi-cluster orchestration systems in the industry (such as [Karmada](https://karmada.io/)) primarily target microservices scenarios, providing high availability and disaster recovery deployment capabilities. However, in terms of AI job scheduling, Karmada's capabilities are still limited. It lacks support for **Volcano Job** and cannot meet requirements such as queue management, multi-tenant fair scheduling, and job priority scheduling.
21-
22-
To address the scheduling and management challenges of AI jobs in a multi-cluster environment, the **Volcano community** has incubated the **[Volcano Global](https://github.com/volcano-sh/volcano-global)** sub-project. Based on Karmada, this project extends Volcano's powerful scheduling capabilities in single clusters, providing a unified scheduling platform for multi-cluster AI jobs. It supports cross-cluster task distribution, resource management, and priority control.
20+
With the rapid growth of enterprise business, a single Kubernetes cluster often cannot meet the demands of large-scale AI training and inference tasks.
21+
Users typically need to manage multiple Kubernetes clusters to achieve unified AI workload distribution, deployment, and management.
22+
Currently, many users are running Volcano across multiple clusters and using [Karmada](https://github.com/karmada-io/karmada) for management.
23+
To better support AI tasks in multi-cluster environments with features such as global queue management, task priority, and fair scheduling,
24+
the Volcano community has incubated the [Volcano Global](https://github.com/volcano-sh/volcano-global) sub-project.
25+
This project extends Volcano's scheduling capabilities from single clusters to multi-cluster scenarios, providing a unified scheduling platform for multi-cluster AI tasks.
26+
It supports cross-cluster task distribution, resource management, and priority control.
2327

2428
## Features
2529

content/en/docs/v1-12-0/multi_cluster_scheduling.md

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,9 +17,13 @@ type = "docs" # Do not modify.
1717

1818
## Background
1919

20-
With the rapid growth of enterprise business, a single Kubernetes cluster often cannot meet the demands of large-scale AI training and inference tasks. Users typically need to manage multiple Kubernetes clusters to achieve unified workload distribution, deployment, and management. Currently, multi-cluster orchestration systems in the industry (such as [Karmada](https://karmada.io/)) primarily target microservices scenarios, providing high availability and disaster recovery deployment capabilities. However, in terms of AI job scheduling, Karmada's capabilities are still limited. It lacks support for **Volcano Job** and cannot meet requirements such as queue management, multi-tenant fair scheduling, and job priority scheduling.
21-
22-
To address the scheduling and management challenges of AI jobs in a multi-cluster environment, the **Volcano community** has incubated the **[Volcano Global](https://github.com/volcano-sh/volcano-global)** sub-project. Based on Karmada, this project extends Volcano's powerful scheduling capabilities in single clusters, providing a unified scheduling platform for multi-cluster AI jobs. It supports cross-cluster task distribution, resource management, and priority control.
20+
With the rapid growth of enterprise business, a single Kubernetes cluster often cannot meet the demands of large-scale AI training and inference tasks.
21+
Users typically need to manage multiple Kubernetes clusters to achieve unified AI workload distribution, deployment, and management.
22+
Currently, many users are running Volcano across multiple clusters and using [Karmada](https://github.com/karmada-io/karmada) for management.
23+
To better support AI tasks in multi-cluster environments with features such as global queue management, task priority, and fair scheduling,
24+
the Volcano community has incubated the [Volcano Global](https://github.com/volcano-sh/volcano-global) sub-project.
25+
This project extends Volcano's scheduling capabilities from single clusters to multi-cluster scenarios, providing a unified scheduling platform for multi-cluster AI tasks.
26+
It supports cross-cluster task distribution, resource management, and priority control.
2327

2428
## Features
2529

content/zh/docs/multi_cluster_scheduling.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,9 +17,9 @@ type = "docs" # Do not modify.
1717

1818
## 背景
1919

20-
随着企业业务的快速增长,单一Kubernetes集群往往无法满足大规模AI训练和推理任务的需求。用户通常需要管理多个Kubernetes集群,以实现工作负载的统一分发、部署和管理。目前,业界的多集群编排系统(如[Karmada](https://karmada.io/))主要针对微服务场景,提供了高可用性和容灾部署能力。然而,在AI作业调度方面,Karmada的能力仍然有限,缺乏对**Volcano Job**的支持,也无法满足队列管理、多租户公平调度和作业优先级调度等需求
21-
22-
为了解决多集群环境下AI作业的调度与管理问题,**Volcano社区**孵化了**[Volcano Global](https://github.com/volcano-sh/volcano-global)**子项目。该项目基于Karmada,扩展了Volcano在单集群中的强大调度能力,为多集群AI作业提供了统一的调度平台,支持跨集群的任务分发、资源管理和优先级控制。
20+
随着企业业务的快速增长,单个 Kubernetes 集群通常无法满足大规模 AI 训练和推理任务的需求。用户通常需要管理多个 Kubernetes 集群,以实现统一的AI工作负载分发、部署和管理
21+
目前,已经有许多用户在多个集群中使用 Volcano,并使用 [Karmada](https://github.com/karmada-io/karmada) 进行管理。为了更好地支持多集群环境中的 AI 任务,支持全局队列管理、任务优先级和公平调度等功能,Volcano 社区孵化了[Volcano Global](https://github.com/volcano-sh/volcano-global)子项目。
22+
该项目将 Volcano 在单个集群中的强大调度能力扩展到多集群场景,为多集群 AI 任务提供统一的调度平台,支持跨集群任务分发、资源管理和优先级控制。
2323

2424
## 功能
2525

content/zh/docs/v1-11-0/multi_cluster_scheduling.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,9 +17,9 @@ type = "docs" # Do not modify.
1717

1818
## 背景
1919

20-
随着企业业务的快速增长,单一Kubernetes集群往往无法满足大规模AI训练和推理任务的需求。用户通常需要管理多个Kubernetes集群,以实现工作负载的统一分发、部署和管理。目前,业界的多集群编排系统(如[Karmada](https://karmada.io/))主要针对微服务场景,提供了高可用性和容灾部署能力。然而,在AI作业调度方面,Karmada的能力仍然有限,缺乏对**Volcano Job**的支持,也无法满足队列管理、多租户公平调度和作业优先级调度等需求
21-
22-
为了解决多集群环境下AI作业的调度与管理问题,**Volcano社区**孵化了**[Volcano Global](https://github.com/volcano-sh/volcano-global)**子项目。该项目基于Karmada,扩展了Volcano在单集群中的强大调度能力,为多集群AI作业提供了统一的调度平台,支持跨集群的任务分发、资源管理和优先级控制。
20+
随着企业业务的快速增长,单个 Kubernetes 集群通常无法满足大规模 AI 训练和推理任务的需求。用户通常需要管理多个 Kubernetes 集群,以实现统一的AI工作负载分发、部署和管理
21+
目前,已经有许多用户在多个集群中使用 Volcano,并使用 [Karmada](https://github.com/karmada-io/karmada) 进行管理。为了更好地支持多集群环境中的 AI 任务,支持全局队列管理、任务优先级和公平调度等功能,Volcano 社区孵化了[Volcano Global](https://github.com/volcano-sh/volcano-global)子项目。
22+
该项目将 Volcano 在单个集群中的强大调度能力扩展到多集群场景,为多集群 AI 任务提供统一的调度平台,支持跨集群任务分发、资源管理和优先级控制。
2323

2424
## 功能
2525

content/zh/docs/v1-12-0/multi_cluster_scheduling.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,9 +17,9 @@ type = "docs" # Do not modify.
1717

1818
## 背景
1919

20-
随着企业业务的快速增长,单一Kubernetes集群往往无法满足大规模AI训练和推理任务的需求。用户通常需要管理多个Kubernetes集群,以实现工作负载的统一分发、部署和管理。目前,业界的多集群编排系统(如[Karmada](https://karmada.io/))主要针对微服务场景,提供了高可用性和容灾部署能力。然而,在AI作业调度方面,Karmada的能力仍然有限,缺乏对**Volcano Job**的支持,也无法满足队列管理、多租户公平调度和作业优先级调度等需求
21-
22-
为了解决多集群环境下AI作业的调度与管理问题,**Volcano社区**孵化了**[Volcano Global](https://github.com/volcano-sh/volcano-global)**子项目。该项目基于Karmada,扩展了Volcano在单集群中的强大调度能力,为多集群AI作业提供了统一的调度平台,支持跨集群的任务分发、资源管理和优先级控制。
20+
随着企业业务的快速增长,单个 Kubernetes 集群通常无法满足大规模 AI 训练和推理任务的需求。用户通常需要管理多个 Kubernetes 集群,以实现统一的AI工作负载分发、部署和管理
21+
目前,已经有许多用户在多个集群中使用 Volcano,并使用 [Karmada](https://github.com/karmada-io/karmada) 进行管理。为了更好地支持多集群环境中的 AI 任务,支持全局队列管理、任务优先级和公平调度等功能,Volcano 社区孵化了[Volcano Global](https://github.com/volcano-sh/volcano-global)子项目。
22+
该项目将 Volcano 在单个集群中的强大调度能力扩展到多集群场景,为多集群 AI 任务提供统一的调度平台,支持跨集群任务分发、资源管理和优先级控制。
2323

2424
## 功能
2525

0 commit comments

Comments
 (0)