|
479 | 479 | ] |
480 | 480 | }, |
481 | 481 | { |
482 | | - "metadata": {}, |
483 | 482 | "cell_type": "markdown", |
484 | | - "source": "VeADK 还支持你将短期记忆持久化存储在云端,未来的某一时刻你可以加载历史对话。" |
| 483 | + "metadata": {}, |
| 484 | + "source": [ |
| 485 | + "VeADK 还支持你将短期记忆持久化存储在云端,未来的某一时刻你可以加载历史对话。" |
| 486 | + ] |
485 | 487 | }, |
486 | 488 | { |
487 | | - "metadata": {}, |
488 | 489 | "cell_type": "markdown", |
489 | | - "source": "使用 MySQL 作为短期记忆的数据库后端:" |
| 490 | + "metadata": {}, |
| 491 | + "source": [ |
| 492 | + "使用 MySQL 作为短期记忆的数据库后端:" |
| 493 | + ] |
490 | 494 | }, |
491 | 495 | { |
492 | 496 | "cell_type": "code", |
|
562 | 566 | "metadata": { |
563 | 567 | "id": "k9wKEHeYxIUT" |
564 | 568 | }, |
565 | | - "source": "如果您使用知识库、长期记忆等进阶功能,请进一步安装 veadk-python 中的扩展包:" |
| 569 | + "source": [ |
| 570 | + "如果您使用知识库、长期记忆等进阶功能,请进一步安装 veadk-python 中的扩展包:" |
| 571 | + ] |
566 | 572 | }, |
567 | 573 | { |
568 | 574 | "cell_type": "code", |
|
571 | 577 | "id": "VZIeRU1QxHrk" |
572 | 578 | }, |
573 | 579 | "outputs": [], |
574 | | - "source": "%pip install veadk-python[extensions] --quiet" |
| 580 | + "source": [ |
| 581 | + "%pip install veadk-python[extensions] --quiet" |
| 582 | + ] |
575 | 583 | }, |
576 | 584 | { |
577 | 585 | "cell_type": "markdown", |
|
601 | 609 | "# Embedding 配置(使用 OpenSearch 时,需要对文本进行向量化处理)\n", |
602 | 610 | "# 设置访问火山方舟的 Embedding 模型\n", |
603 | 611 | "os.environ[\"MODEL_EMBEDDING_NAME\"] = \"doubao-embedding-text-240715\"\n", |
604 | | - "os.environ[\"MODEL_EMBEDDING_API_BASE\"] = (\n", |
605 | | - " \"https://ark.cn-beijing.volces.com/api/v3/\"\n", |
606 | | - ")\n", |
| 612 | + "os.environ[\"MODEL_EMBEDDING_API_BASE\"] = \"https://ark.cn-beijing.volces.com/api/v3/\"\n", |
607 | 613 | "os.environ[\"MODEL_EMBEDDING_DIM\"] = \"2560\"\n", |
608 | 614 | "os.environ[\"MODEL_EMBEDDING_API_KEY\"] = \"\"" |
609 | 615 | ] |
|
637 | 643 | "\n", |
638 | 644 | "# 初始化一个长期记忆,采用 OpenSearch 向量化存储\n", |
639 | 645 | "# 长期记忆是跨 Session 的\n", |
640 | | - "long_term_memory = LongTermMemory(backend=\"opensearch\", app_name=app_name, user_id=user_id)\n", |
| 646 | + "long_term_memory = LongTermMemory(\n", |
| 647 | + " backend=\"opensearch\", app_name=app_name, user_id=user_id\n", |
| 648 | + ")\n", |
641 | 649 | "\n", |
642 | 650 | "agent = Agent(long_term_memory=long_term_memory)\n", |
643 | 651 | "\n", |
|
783 | 791 | "metadata": { |
784 | 792 | "id": "_jZauBoRztaU" |
785 | 793 | }, |
786 | | - "source": "如果您使用知识库、长期记忆等进阶功能,请进一步安装 veadk-python 中的扩展包:" |
| 794 | + "source": [ |
| 795 | + "如果您使用知识库、长期记忆等进阶功能,请进一步安装 veadk-python 中的扩展包:" |
| 796 | + ] |
787 | 797 | }, |
788 | 798 | { |
789 | 799 | "cell_type": "code", |
|
792 | 802 | "id": "xuozqr1Hzwjz" |
793 | 803 | }, |
794 | 804 | "outputs": [], |
795 | | - "source": "%pip install veadk-python[extensions] --quiet" |
| 805 | + "source": [ |
| 806 | + "%pip install veadk-python[extensions] --quiet" |
| 807 | + ] |
796 | 808 | }, |
797 | 809 | { |
798 | 810 | "cell_type": "markdown", |
|
821 | 833 | "\n", |
822 | 834 | "# 设置访问火山方舟的 Embedding 模型\n", |
823 | 835 | "os.environ[\"MODEL_EMBEDDING_NAME\"] = \"doubao-embedding-text-240715\"\n", |
824 | | - "os.environ[\"MODEL_EMBEDDING_API_BASE\"] = (\n", |
825 | | - " \"https://ark.cn-beijing.volces.com/api/v3/\"\n", |
826 | | - ")\n", |
| 836 | + "os.environ[\"MODEL_EMBEDDING_API_BASE\"] = \"https://ark.cn-beijing.volces.com/api/v3/\"\n", |
827 | 837 | "os.environ[\"MODEL_EMBEDDING_DIM\"] = \"2560\"\n", |
828 | 838 | "os.environ[\"MODEL_EMBEDDING_API_KEY\"] = \"\"" |
829 | 839 | ] |
|
892 | 902 | "session_id = \"veadk_playground_session\"\n", |
893 | 903 | "\n", |
894 | 904 | "\n", |
895 | | - "knowledgebase = KnowledgeBase(backend=\"opensearch\", app_name=app_name) # 指定 opensearch 后端\n", |
| 905 | + "knowledgebase = KnowledgeBase(\n", |
| 906 | + " backend=\"opensearch\", app_name=app_name\n", |
| 907 | + ") # 指定 opensearch 后端\n", |
896 | 908 | "knowledgebase.add_from_files(files=[knowledgebase_file])\n", |
897 | 909 | "\n", |
898 | 910 | "agent = Agent(knowledgebase=knowledgebase)\n", |
|
1594 | 1606 | "</pre>\n" |
1595 | 1607 | ], |
1596 | 1608 | "text/plain": [ |
1597 | | - "✨ You're running DeepEval's latest \u001B[38;2;106;0;255mBase Evaluation \u001B[0m\u001B[1;38;2;106;0;255m[\u001B[0m\u001B[38;2;106;0;255mGEval\u001B[0m\u001B[1;38;2;106;0;255m]\u001B[0m\u001B[38;2;106;0;255m Metric\u001B[0m! \u001B[1;38;2;55;65;81m(\u001B[0m\u001B[38;2;55;65;81musing \u001B[0m\u001B[3;38;2;55;65;81mNone\u001B[0m\u001B[38;2;55;65;81m \u001B[0m\u001B[1;38;2;55;65;81m(\u001B[0m\u001B[38;2;55;65;81mLocal Model\u001B[0m\u001B[1;38;2;55;65;81m)\u001B[0m\u001B[38;2;55;65;81m, \u001B[0m\u001B[38;2;55;65;81mstrict\u001B[0m\u001B[38;2;55;65;81m=\u001B[0m\u001B[3;38;2;55;65;81mFalse\u001B[0m\u001B[38;2;55;65;81m, \u001B[0m\n", |
1598 | | - "\u001B[38;2;55;65;81masync_mode\u001B[0m\u001B[38;2;55;65;81m=\u001B[0m\u001B[3;38;2;55;65;81mTrue\u001B[0m\u001B[1;38;2;55;65;81m)\u001B[0m\u001B[38;2;55;65;81m...\u001B[0m\n" |
| 1609 | + "✨ You're running DeepEval's latest \u001b[38;2;106;0;255mBase Evaluation \u001b[0m\u001b[1;38;2;106;0;255m[\u001b[0m\u001b[38;2;106;0;255mGEval\u001b[0m\u001b[1;38;2;106;0;255m]\u001b[0m\u001b[38;2;106;0;255m Metric\u001b[0m! \u001b[1;38;2;55;65;81m(\u001b[0m\u001b[38;2;55;65;81musing \u001b[0m\u001b[3;38;2;55;65;81mNone\u001b[0m\u001b[38;2;55;65;81m \u001b[0m\u001b[1;38;2;55;65;81m(\u001b[0m\u001b[38;2;55;65;81mLocal Model\u001b[0m\u001b[1;38;2;55;65;81m)\u001b[0m\u001b[38;2;55;65;81m, \u001b[0m\u001b[38;2;55;65;81mstrict\u001b[0m\u001b[38;2;55;65;81m=\u001b[0m\u001b[3;38;2;55;65;81mFalse\u001b[0m\u001b[38;2;55;65;81m, \u001b[0m\n", |
| 1610 | + "\u001b[38;2;55;65;81masync_mode\u001b[0m\u001b[38;2;55;65;81m=\u001b[0m\u001b[3;38;2;55;65;81mTrue\u001b[0m\u001b[1;38;2;55;65;81m)\u001b[0m\u001b[38;2;55;65;81m...\u001b[0m\n" |
1599 | 1611 | ] |
1600 | 1612 | }, |
1601 | 1613 | "metadata": {}, |
|
1608 | 1620 | "</pre>\n" |
1609 | 1621 | ], |
1610 | 1622 | "text/plain": [ |
1611 | | - "✨ You're running DeepEval's latest \u001B[38;2;106;0;255mTool Correctness Metric\u001B[0m! \u001B[1;38;2;55;65;81m(\u001B[0m\u001B[38;2;55;65;81musing \u001B[0m\u001B[3;38;2;55;65;81mNone\u001B[0m\u001B[38;2;55;65;81m, \u001B[0m\u001B[38;2;55;65;81mstrict\u001B[0m\u001B[38;2;55;65;81m=\u001B[0m\u001B[3;38;2;55;65;81mFalse\u001B[0m\u001B[38;2;55;65;81m, \u001B[0m\u001B[38;2;55;65;81masync_mode\u001B[0m\u001B[38;2;55;65;81m=\u001B[0m\u001B[3;38;2;55;65;81mTrue\u001B[0m\u001B[1;38;2;55;65;81m)\u001B[0m\u001B[38;2;55;65;81m...\u001B[0m\n" |
| 1623 | + "✨ You're running DeepEval's latest \u001b[38;2;106;0;255mTool Correctness Metric\u001b[0m! \u001b[1;38;2;55;65;81m(\u001b[0m\u001b[38;2;55;65;81musing \u001b[0m\u001b[3;38;2;55;65;81mNone\u001b[0m\u001b[38;2;55;65;81m, \u001b[0m\u001b[38;2;55;65;81mstrict\u001b[0m\u001b[38;2;55;65;81m=\u001b[0m\u001b[3;38;2;55;65;81mFalse\u001b[0m\u001b[38;2;55;65;81m, \u001b[0m\u001b[38;2;55;65;81masync_mode\u001b[0m\u001b[38;2;55;65;81m=\u001b[0m\u001b[3;38;2;55;65;81mTrue\u001b[0m\u001b[1;38;2;55;65;81m)\u001b[0m\u001b[38;2;55;65;81m...\u001b[0m\n" |
1612 | 1624 | ] |
1613 | 1625 | }, |
1614 | 1626 | "metadata": {}, |
|
1689 | 1701 | "text/plain": [ |
1690 | 1702 | "\n", |
1691 | 1703 | "\n", |
1692 | | - "\u001B[38;2;5;245;141m✓\u001B[0m Evaluation completed 🎉! \u001B[1m(\u001B[0mtime taken: \u001B[1;36m24.\u001B[0m09s | token cost: \u001B[1;36m0.0\u001B[0m USD\u001B[1m)\u001B[0m\n", |
1693 | | - "» Test Results \u001B[1m(\u001B[0m\u001B[1;36m1\u001B[0m total tests\u001B[1m)\u001B[0m:\n", |
1694 | | - " » Pass Rate: \u001B[1;36m100.0\u001B[0m% | Passed: \u001B[1;32m1\u001B[0m | Failed: \u001B[1;31m0\u001B[0m\n", |
| 1704 | + "\u001b[38;2;5;245;141m✓\u001b[0m Evaluation completed 🎉! \u001b[1m(\u001b[0mtime taken: \u001b[1;36m24.\u001b[0m09s | token cost: \u001b[1;36m0.0\u001b[0m USD\u001b[1m)\u001b[0m\n", |
| 1705 | + "» Test Results \u001b[1m(\u001b[0m\u001b[1;36m1\u001b[0m total tests\u001b[1m)\u001b[0m:\n", |
| 1706 | + " » Pass Rate: \u001b[1;36m100.0\u001b[0m% | Passed: \u001b[1;32m1\u001b[0m | Failed: \u001b[1;31m0\u001b[0m\n", |
1695 | 1707 | "\n", |
1696 | 1708 | " ================================================================================ \n", |
1697 | 1709 | "\n", |
1698 | 1710 | "» What to share evals with your team, or a place for your test cases to live? ❤️ 🏡\n", |
1699 | | - " » Run \u001B[1;32m'deepeval view'\u001B[0m to analyze and save testing results on \u001B[38;2;106;0;255mConfident AI\u001B[0m.\n", |
| 1711 | + " » Run \u001b[1;32m'deepeval view'\u001b[0m to analyze and save testing results on \u001b[38;2;106;0;255mConfident AI\u001b[0m.\n", |
1700 | 1712 | "\n", |
1701 | 1713 | "\n" |
1702 | 1714 | ] |
|
1780 | 1792 | "outputs": [], |
1781 | 1793 | "source": [ |
1782 | 1794 | "# 安装火山引擎提供的依赖\n", |
1783 | | - "%pip install agent-pilot-sdk>=0.0.9" |
| 1795 | + "%pip install agent-pilot-sdk>=0.1.2" |
1784 | 1796 | ] |
1785 | 1797 | }, |
1786 | 1798 | { |
|
1789 | 1801 | "id": "5IjI4lrHSZcD" |
1790 | 1802 | }, |
1791 | 1803 | "source": [ |
1792 | | - "设置 KEY 来访问服务:" |
| 1804 | + "您可以从 Prompt Pilot 产品[官方页面](https://promptpilot.volcengine.com/)获取 KEY 和 Workspace ID,在下方设置后访问服务:" |
1793 | 1805 | ] |
1794 | 1806 | }, |
1795 | 1807 | { |
|
1802 | 1814 | "source": [ |
1803 | 1815 | "import os\n", |
1804 | 1816 | "\n", |
1805 | | - "os.environ[\"PROMPT_PILOT_API_KEY\"] = \"\"" |
| 1817 | + "os.environ[\"PROMPT_PILOT_API_KEY\"] = \"\"\n", |
| 1818 | + "os.environ[\"PROMPT_PILOT_WORKSPACE_ID\"] = \"\"" |
1806 | 1819 | ] |
1807 | 1820 | }, |
1808 | 1821 | { |
|
1871 | 1884 | "source": [ |
1872 | 1885 | "from veadk.integrations.ve_prompt_pilot.ve_prompt_pilot import VePromptPilot\n", |
1873 | 1886 | "\n", |
1874 | | - "prompt_pilot = VePromptPilot(api_key=os.getenv(\"PROMPT_PILOT_API_KEY\"))\n", |
| 1887 | + "prompt_pilot = VePromptPilot(\n", |
| 1888 | + " api_key=os.getenv(\"PROMPT_PILOT_API_KEY\"),\n", |
| 1889 | + " workspace_id=os.getenv(\"PROMPT_PILOT_WORKSPACE_ID\"),\n", |
| 1890 | + ")\n", |
1875 | 1891 | "\n", |
1876 | 1892 | "refined_prompt = prompt_pilot.optimize(agents=[agent])" |
1877 | 1893 | ] |
|
0 commit comments