|
| 1 | +// SPDX-License-Identifier: Apache-2.0 |
| 2 | +// SPDX-FileCopyrightText: Copyright the Vortex contributors |
| 3 | + |
| 4 | +//! In-place filter (ipf) benchmark for `BufferMut`. |
| 5 | +
|
| 6 | +use divan::Bencher; |
| 7 | +use vortex_buffer::BufferMut; |
| 8 | +use vortex_compute::in_place_filter::InPlaceFilter; |
| 9 | +use vortex_mask::Mask; |
| 10 | + |
| 11 | +fn main() { |
| 12 | + divan::main(); |
| 13 | +} |
| 14 | + |
| 15 | +// Buffer size to test - focusing on 1024 for now |
| 16 | +const BUFFER_SIZE: usize = 1024; |
| 17 | + |
| 18 | +// Pattern types for testing. |
| 19 | +#[derive(Copy, Clone, Debug)] |
| 20 | +enum Pattern { |
| 21 | + Random, |
| 22 | + Contiguous, |
| 23 | + Alternating, |
| 24 | +} |
| 25 | + |
| 26 | +impl std::fmt::Display for Pattern { |
| 27 | + fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { |
| 28 | + match self { |
| 29 | + Pattern::Random => write!(f, "random"), |
| 30 | + Pattern::Contiguous => write!(f, "contiguous"), |
| 31 | + Pattern::Alternating => write!(f, "alternating"), |
| 32 | + } |
| 33 | + } |
| 34 | +} |
| 35 | + |
| 36 | +/// Creates a test buffer filled with sequential values. |
| 37 | +fn create_test_buffer<T>(size: usize) -> BufferMut<T> |
| 38 | +where |
| 39 | + T: Copy + Default + From<u8>, |
| 40 | +{ |
| 41 | + let mut buffer = BufferMut::with_capacity(size); |
| 42 | + for i in 0..size { |
| 43 | + #[expect(clippy::cast_possible_truncation)] |
| 44 | + buffer.push(T::from((i % 256) as u8)); |
| 45 | + } |
| 46 | + buffer |
| 47 | +} |
| 48 | + |
| 49 | +/// Generates a mask with the specified selectivity and pattern. |
| 50 | +fn generate_mask(len: usize, selectivity: f64, pattern: Pattern) -> Mask { |
| 51 | + #[expect(clippy::cast_possible_truncation)] |
| 52 | + #[expect(clippy::cast_sign_loss)] |
| 53 | + let num_selected = ((len as f64) * selectivity).round() as usize; |
| 54 | + |
| 55 | + let selection = match pattern { |
| 56 | + Pattern::Random => { |
| 57 | + // Random selection - distribute selected elements randomly. |
| 58 | + // Use a deterministic pattern for reproducibility. |
| 59 | + let mut selection = vec![false; len]; |
| 60 | + let mut indices: Vec<usize> = (0..len).collect(); |
| 61 | + |
| 62 | + // Simple deterministic shuffle. |
| 63 | + for i in (1..len).rev() { |
| 64 | + let j = (i * 7 + 13) % (i + 1); |
| 65 | + indices.swap(i, j); |
| 66 | + } |
| 67 | + |
| 68 | + for i in 0..num_selected.min(len) { |
| 69 | + selection[indices[i]] = true; |
| 70 | + } |
| 71 | + selection |
| 72 | + } |
| 73 | + Pattern::Contiguous => { |
| 74 | + // One contiguous block in the middle. |
| 75 | + let mut selection = vec![false; len]; |
| 76 | + let start = (len.saturating_sub(num_selected)) / 2; |
| 77 | + for i in start..(start + num_selected).min(len) { |
| 78 | + selection[i] = true; |
| 79 | + } |
| 80 | + selection |
| 81 | + } |
| 82 | + Pattern::Alternating => { |
| 83 | + // Select every nth element to achieve desired selectivity. |
| 84 | + let mut selection = vec![false; len]; |
| 85 | + if num_selected > 0 { |
| 86 | + let step = len.max(1) / num_selected.max(1); |
| 87 | + let step = step.max(1); |
| 88 | + for i in (0..len).step_by(step).take(num_selected) { |
| 89 | + selection[i] = true; |
| 90 | + } |
| 91 | + } |
| 92 | + selection |
| 93 | + } |
| 94 | + }; |
| 95 | + |
| 96 | + Mask::from_iter(selection) |
| 97 | +} |
| 98 | + |
| 99 | +// ===== PRIMARY BENCHMARK: Full Selectivity Spectrum ===== |
| 100 | +// This shows performance across the entire selectivity range |
| 101 | +// with extra detail around the 80% threshold. |
| 102 | + |
| 103 | +// Macro to generate a type/size benchmark module with all selectivity benchmarks. |
| 104 | +macro_rules! type_size_bench_group { |
| 105 | + ($mod_name:ident, $type:ty) => { |
| 106 | + #[divan::bench_group] |
| 107 | + mod $mod_name { |
| 108 | + use super::*; |
| 109 | + type T = $type; |
| 110 | + const SIZE: usize = BUFFER_SIZE; |
| 111 | + |
| 112 | + // Inner macro for generating individual selectivity benchmarks. |
| 113 | + macro_rules! selectivity_bench { |
| 114 | + ($name: ident,$selectivity: expr) => { |
| 115 | + #[divan::bench(sample_count = 1000)] |
| 116 | + fn $name(bencher: Bencher) { |
| 117 | + bencher |
| 118 | + .with_inputs(|| { |
| 119 | + let buffer = create_test_buffer::<T>(SIZE); |
| 120 | + let mask = generate_mask(SIZE, $selectivity, Pattern::Random); |
| 121 | + (buffer, mask) |
| 122 | + }) |
| 123 | + .bench_values(|(mut buffer, mask)| { |
| 124 | + buffer.in_place_filter(&mask); |
| 125 | + divan::black_box(buffer); |
| 126 | + }); |
| 127 | + } |
| 128 | + }; |
| 129 | + } |
| 130 | + |
| 131 | + // Generate benchmarks for each selectivity level. |
| 132 | + selectivity_bench!(sel_01_percent, 0.01); |
| 133 | + selectivity_bench!(sel_25_percent, 0.25); |
| 134 | + selectivity_bench!(sel_50_percent, 0.50); |
| 135 | + selectivity_bench!(sel_75_percent, 0.75); |
| 136 | + selectivity_bench!(sel_78_percent, 0.78); |
| 137 | + selectivity_bench!(sel_79_percent, 0.79); |
| 138 | + selectivity_bench!(sel_80_percent, 0.80); |
| 139 | + selectivity_bench!(sel_81_percent, 0.81); |
| 140 | + selectivity_bench!(sel_82_percent, 0.82); |
| 141 | + selectivity_bench!(sel_85_percent, 0.85); |
| 142 | + selectivity_bench!(sel_99_percent, 0.99); |
| 143 | + } |
| 144 | + }; |
| 145 | +} |
| 146 | + |
| 147 | +// Generate benchmark modules for each type. |
| 148 | +type_size_bench_group!(u8_1024, u8); |
| 149 | +type_size_bench_group!(u32_1024, u32); |
| 150 | +type_size_bench_group!(u64_1024, u64); |
| 151 | + |
| 152 | +// ===== PATTERN COMPARISON AT THRESHOLD ===== |
| 153 | +// Test different patterns but ONLY at the 80% threshold where the algorithm choice matters most. |
| 154 | +// This tests whether certain patterns perform better with the index-based vs slice-based approach. |
| 155 | + |
| 156 | +#[divan::bench_group] |
| 157 | +mod u32_1024_patterns { |
| 158 | + use super::*; |
| 159 | + type T = u32; |
| 160 | + const SIZE: usize = BUFFER_SIZE; |
| 161 | + const SELECTIVITY: f64 = 0.80; |
| 162 | + |
| 163 | + #[divan::bench(sample_count = 1000)] |
| 164 | + fn random(bencher: Bencher) { |
| 165 | + bencher |
| 166 | + .with_inputs(|| { |
| 167 | + let buffer = create_test_buffer::<T>(SIZE); |
| 168 | + let mask = generate_mask(SIZE, SELECTIVITY, Pattern::Random); |
| 169 | + (buffer, mask) |
| 170 | + }) |
| 171 | + .bench_values(|(mut buffer, mask)| { |
| 172 | + buffer.in_place_filter(&mask); |
| 173 | + divan::black_box(buffer); |
| 174 | + }); |
| 175 | + } |
| 176 | + |
| 177 | + #[divan::bench(sample_count = 1000)] |
| 178 | + fn contiguous(bencher: Bencher) { |
| 179 | + bencher |
| 180 | + .with_inputs(|| { |
| 181 | + let buffer = create_test_buffer::<T>(SIZE); |
| 182 | + let mask = generate_mask(SIZE, SELECTIVITY, Pattern::Contiguous); |
| 183 | + (buffer, mask) |
| 184 | + }) |
| 185 | + .bench_values(|(mut buffer, mask)| { |
| 186 | + buffer.in_place_filter(&mask); |
| 187 | + divan::black_box(buffer); |
| 188 | + }); |
| 189 | + } |
| 190 | + |
| 191 | + #[divan::bench(sample_count = 1000)] |
| 192 | + fn alternating(bencher: Bencher) { |
| 193 | + bencher |
| 194 | + .with_inputs(|| { |
| 195 | + let buffer = create_test_buffer::<T>(SIZE); |
| 196 | + let mask = generate_mask(SIZE, SELECTIVITY, Pattern::Alternating); |
| 197 | + (buffer, mask) |
| 198 | + }) |
| 199 | + .bench_values(|(mut buffer, mask)| { |
| 200 | + buffer.in_place_filter(&mask); |
| 201 | + divan::black_box(buffer); |
| 202 | + }); |
| 203 | + } |
| 204 | +} |
| 205 | + |
| 206 | +// ===== LARGE ELEMENT BENCHMARKS ===== |
| 207 | +// Test with larger element sizes at the critical threshold range to understand |
| 208 | +// how memcpy performance affects the algorithms. |
| 209 | + |
| 210 | +#[derive(Copy, Clone, Default)] |
| 211 | +#[allow(dead_code)] |
| 212 | +struct LargeElement([u8; 32]); |
| 213 | + |
| 214 | +impl From<u8> for LargeElement { |
| 215 | + fn from(value: u8) -> Self { |
| 216 | + LargeElement([value; 32]) |
| 217 | + } |
| 218 | +} |
| 219 | + |
| 220 | +#[divan::bench_group] |
| 221 | +mod large_elem_1024 { |
| 222 | + use super::*; |
| 223 | + type T = LargeElement; |
| 224 | + const SIZE: usize = BUFFER_SIZE; |
| 225 | + |
| 226 | + #[divan::bench(sample_count = 1000)] |
| 227 | + fn sel_50_percent(bencher: Bencher) { |
| 228 | + bencher |
| 229 | + .with_inputs(|| { |
| 230 | + let buffer = create_test_buffer::<T>(SIZE); |
| 231 | + let mask = generate_mask(SIZE, 0.50, Pattern::Random); |
| 232 | + (buffer, mask) |
| 233 | + }) |
| 234 | + .bench_values(|(mut buffer, mask)| { |
| 235 | + buffer.in_place_filter(&mask); |
| 236 | + divan::black_box(buffer); |
| 237 | + }); |
| 238 | + } |
| 239 | + |
| 240 | + #[divan::bench(sample_count = 1000)] |
| 241 | + fn sel_75_percent(bencher: Bencher) { |
| 242 | + bencher |
| 243 | + .with_inputs(|| { |
| 244 | + let buffer = create_test_buffer::<T>(SIZE); |
| 245 | + let mask = generate_mask(SIZE, 0.75, Pattern::Random); |
| 246 | + (buffer, mask) |
| 247 | + }) |
| 248 | + .bench_values(|(mut buffer, mask)| { |
| 249 | + buffer.in_place_filter(&mask); |
| 250 | + divan::black_box(buffer); |
| 251 | + }); |
| 252 | + } |
| 253 | + |
| 254 | + #[divan::bench(sample_count = 1000)] |
| 255 | + fn sel_79_percent(bencher: Bencher) { |
| 256 | + bencher |
| 257 | + .with_inputs(|| { |
| 258 | + let buffer = create_test_buffer::<T>(SIZE); |
| 259 | + let mask = generate_mask(SIZE, 0.79, Pattern::Random); |
| 260 | + (buffer, mask) |
| 261 | + }) |
| 262 | + .bench_values(|(mut buffer, mask)| { |
| 263 | + buffer.in_place_filter(&mask); |
| 264 | + divan::black_box(buffer); |
| 265 | + }); |
| 266 | + } |
| 267 | + |
| 268 | + #[divan::bench(sample_count = 1000)] |
| 269 | + fn sel_80_percent(bencher: Bencher) { |
| 270 | + bencher |
| 271 | + .with_inputs(|| { |
| 272 | + let buffer = create_test_buffer::<T>(SIZE); |
| 273 | + let mask = generate_mask(SIZE, 0.80, Pattern::Random); |
| 274 | + (buffer, mask) |
| 275 | + }) |
| 276 | + .bench_values(|(mut buffer, mask)| { |
| 277 | + buffer.in_place_filter(&mask); |
| 278 | + divan::black_box(buffer); |
| 279 | + }); |
| 280 | + } |
| 281 | + |
| 282 | + #[divan::bench(sample_count = 1000)] |
| 283 | + fn sel_81_percent(bencher: Bencher) { |
| 284 | + bencher |
| 285 | + .with_inputs(|| { |
| 286 | + let buffer = create_test_buffer::<T>(SIZE); |
| 287 | + let mask = generate_mask(SIZE, 0.81, Pattern::Random); |
| 288 | + (buffer, mask) |
| 289 | + }) |
| 290 | + .bench_values(|(mut buffer, mask)| { |
| 291 | + buffer.in_place_filter(&mask); |
| 292 | + divan::black_box(buffer); |
| 293 | + }); |
| 294 | + } |
| 295 | + |
| 296 | + #[divan::bench] |
| 297 | + fn sel_85_percent(bencher: Bencher) { |
| 298 | + bencher |
| 299 | + .with_inputs(|| { |
| 300 | + let buffer = create_test_buffer::<T>(SIZE); |
| 301 | + let mask = generate_mask(SIZE, 0.85, Pattern::Random); |
| 302 | + (buffer, mask) |
| 303 | + }) |
| 304 | + .bench_values(|(mut buffer, mask)| { |
| 305 | + buffer.in_place_filter(&mask); |
| 306 | + divan::black_box(buffer); |
| 307 | + }); |
| 308 | + } |
| 309 | + |
| 310 | + #[divan::bench] |
| 311 | + fn sel_90_percent(bencher: Bencher) { |
| 312 | + bencher |
| 313 | + .with_inputs(|| { |
| 314 | + let buffer = create_test_buffer::<T>(SIZE); |
| 315 | + let mask = generate_mask(SIZE, 0.90, Pattern::Random); |
| 316 | + (buffer, mask) |
| 317 | + }) |
| 318 | + .bench_values(|(mut buffer, mask)| { |
| 319 | + buffer.in_place_filter(&mask); |
| 320 | + divan::black_box(buffer); |
| 321 | + }); |
| 322 | + } |
| 323 | +} |
0 commit comments