|
| 1 | +// SPDX-License-Identifier: Apache-2.0 |
| 2 | +// SPDX-FileCopyrightText: Copyright the Vortex contributors |
| 3 | + |
| 4 | +//! Compression Strategies Showcase |
| 5 | +//! |
| 6 | +//! This example demonstrates Vortex's powerful compression capabilities, |
| 7 | +//! comparing different encoding strategies for various data patterns. |
| 8 | +//! |
| 9 | +//! Run with: cargo run --example compression_showcase |
| 10 | +
|
| 11 | +use vortex::arrays::{PrimitiveArray, StructArray, VarBinArray}; |
| 12 | +use vortex::compressor::BtrBlocksCompressor; |
| 13 | +use vortex::dtype::{DType, Nullability}; |
| 14 | +use vortex::validity::Validity; |
| 15 | +use vortex::{Array, IntoArray}; |
| 16 | +use vortex_buffer::Buffer; |
| 17 | + |
| 18 | +fn main() -> Result<(), Box<dyn std::error::Error>> { |
| 19 | + println!("=== Vortex Compression Showcase ===\n"); |
| 20 | + |
| 21 | + println!("This example demonstrates how Vortex automatically selects"); |
| 22 | + println!("optimal compression strategies for different data patterns.\n"); |
| 23 | + |
| 24 | + // 1. Compress sequential/monotonic data |
| 25 | + println!("1. Sequential Data Compression:"); |
| 26 | + compress_sequential_data()?; |
| 27 | + |
| 28 | + // 2. Compress repetitive data |
| 29 | + println!("\n2. Repetitive Data Compression:"); |
| 30 | + compress_repetitive_data()?; |
| 31 | + |
| 32 | + // 3. Compress string data |
| 33 | + println!("\n3. String Data Compression:"); |
| 34 | + compress_string_data()?; |
| 35 | + |
| 36 | + // 4. Compress floating-point data |
| 37 | + println!("\n4. Floating-Point Data Compression:"); |
| 38 | + compress_float_data()?; |
| 39 | + |
| 40 | + // 5. Compress sparse data |
| 41 | + println!("\n5. Sparse Data Compression:"); |
| 42 | + compress_sparse_data()?; |
| 43 | + |
| 44 | + // 6. Compress structured data |
| 45 | + println!("\n6. Structured Data Compression:"); |
| 46 | + compress_structured_data()?; |
| 47 | + |
| 48 | + println!("\n=== Compression showcase completed! ==="); |
| 49 | + Ok(()) |
| 50 | +} |
| 51 | + |
| 52 | +fn compress_sequential_data() -> Result<(), Box<dyn std::error::Error>> { |
| 53 | + // Create sequential data (e.g., timestamps, IDs) |
| 54 | + let sequential: PrimitiveArray = (1000..11000).map(|i| i as u64).collect(); |
| 55 | + |
| 56 | + let uncompressed_size = estimate_size(sequential.as_ref()); |
| 57 | + println!(" Original sequential data (10,000 values):"); |
| 58 | + println!(" Uncompressed size: ~{} bytes", uncompressed_size); |
| 59 | + |
| 60 | + // Compress using default strategy |
| 61 | + let compressor = BtrBlocksCompressor::default(); |
| 62 | + let compressed = compressor.compress(sequential.as_ref())?; |
| 63 | + |
| 64 | + let compressed_size = compressed.nbytes(); |
| 65 | + let ratio = uncompressed_size as f64 / compressed_size as f64; |
| 66 | + |
| 67 | + println!(" Compressed size: ~{} bytes", compressed_size); |
| 68 | + println!(" Compression ratio: {:.2}x", ratio); |
| 69 | + println!(" Encoding: {}", compressed.encoding().id()); |
| 70 | + println!(" Note: Sequential data often compresses well with Delta or FoR encoding"); |
| 71 | + |
| 72 | + Ok(()) |
| 73 | +} |
| 74 | + |
| 75 | +fn compress_repetitive_data() -> Result<(), Box<dyn std::error::Error>> { |
| 76 | + // Create highly repetitive data (run-length encoding opportunity) |
| 77 | + let mut repetitive = Vec::new(); |
| 78 | + for i in 0..100 { |
| 79 | + for _ in 0..100 { |
| 80 | + repetitive.push(i as u32); |
| 81 | + } |
| 82 | + } |
| 83 | + let array: PrimitiveArray = repetitive.into_iter().collect(); |
| 84 | + |
| 85 | + let uncompressed_size = estimate_size(array.as_ref()); |
| 86 | + println!(" Repetitive data (100 values, each repeated 100 times):"); |
| 87 | + println!(" Uncompressed size: ~{} bytes", uncompressed_size); |
| 88 | + |
| 89 | + let compressor = BtrBlocksCompressor::default(); |
| 90 | + let compressed = compressor.compress(array.as_ref())?; |
| 91 | + |
| 92 | + let compressed_size = compressed.nbytes(); |
| 93 | + let ratio = uncompressed_size as f64 / compressed_size as f64; |
| 94 | + |
| 95 | + println!(" Compressed size: ~{} bytes", compressed_size); |
| 96 | + println!(" Compression ratio: {:.2}x", ratio); |
| 97 | + println!(" Encoding: {}", compressed.encoding().id()); |
| 98 | + println!(" Note: RLE (Run-Length Encoding) is ideal for repetitive data"); |
| 99 | + |
| 100 | + Ok(()) |
| 101 | +} |
| 102 | + |
| 103 | +fn compress_string_data() -> Result<(), Box<dyn std::error::Error>> { |
| 104 | + // Create string data with patterns |
| 105 | + let categories = vec!["Electronics", "Clothing", "Food", "Books"]; |
| 106 | + let mut strings = Vec::new(); |
| 107 | + |
| 108 | + // Repeat categories multiple times (good for dictionary encoding) |
| 109 | + for _ in 0..2500 { |
| 110 | + for category in &categories { |
| 111 | + strings.push(Some(*category)); |
| 112 | + } |
| 113 | + } |
| 114 | + |
| 115 | + let array = VarBinArray::from_iter(strings, DType::Utf8(Nullability::NonNullable)); |
| 116 | + |
| 117 | + let uncompressed_size = estimate_size(array.as_ref()); |
| 118 | + println!(" Categorical string data (10,000 strings, 4 categories):"); |
| 119 | + println!(" Uncompressed size: ~{} bytes", uncompressed_size); |
| 120 | + |
| 121 | + let compressor = BtrBlocksCompressor::default(); |
| 122 | + let compressed = compressor.compress(array.as_ref())?; |
| 123 | + |
| 124 | + let compressed_size = compressed.nbytes(); |
| 125 | + let ratio = uncompressed_size as f64 / compressed_size as f64; |
| 126 | + |
| 127 | + println!(" Compressed size: ~{} bytes", compressed_size); |
| 128 | + println!(" Compression ratio: {:.2}x", ratio); |
| 129 | + println!(" Encoding: {}", compressed.encoding().id()); |
| 130 | + println!(" Note: Dictionary encoding is excellent for categorical/repetitive strings"); |
| 131 | + |
| 132 | + Ok(()) |
| 133 | +} |
| 134 | + |
| 135 | +fn compress_float_data() -> Result<(), Box<dyn std::error::Error>> { |
| 136 | + // Create floating-point data with patterns |
| 137 | + let floats: Buffer<f64> = (0..10000).map(|i| (i as f64) * 0.1 + 100.0).collect(); |
| 138 | + let array = floats.into_array(); |
| 139 | + |
| 140 | + let uncompressed_size = estimate_size(&array); |
| 141 | + println!(" Floating-point data (10,000 values):"); |
| 142 | + println!(" Uncompressed size: ~{} bytes", uncompressed_size); |
| 143 | + |
| 144 | + let compressor = BtrBlocksCompressor::default(); |
| 145 | + let compressed = compressor.compress(array.as_ref())?; |
| 146 | + |
| 147 | + let compressed_size = compressed.nbytes(); |
| 148 | + let ratio = uncompressed_size as f64 / compressed_size as f64; |
| 149 | + |
| 150 | + println!(" Compressed size: ~{} bytes", compressed_size); |
| 151 | + println!(" Compression ratio: {:.2}x", ratio); |
| 152 | + println!(" Encoding: {}", compressed.encoding().id()); |
| 153 | + println!(" Note: ALP or PCO encodings are optimized for floating-point data"); |
| 154 | + |
| 155 | + Ok(()) |
| 156 | +} |
| 157 | + |
| 158 | +fn compress_sparse_data() -> Result<(), Box<dyn std::error::Error>> { |
| 159 | + // Create sparse data (mostly zeros with few non-zero values) |
| 160 | + let mut sparse = vec![0i64; 10000]; |
| 161 | + for i in (0..10000).step_by(100) { |
| 162 | + sparse[i] = (i * 42) as i64; |
| 163 | + } |
| 164 | + let array: PrimitiveArray = sparse.into_iter().collect(); |
| 165 | + |
| 166 | + let uncompressed_size = estimate_size(array.as_ref()); |
| 167 | + println!(" Sparse data (10,000 values, 99% zeros):"); |
| 168 | + println!(" Uncompressed size: ~{} bytes", uncompressed_size); |
| 169 | + |
| 170 | + let compressor = BtrBlocksCompressor::default(); |
| 171 | + let compressed = compressor.compress(array.as_ref())?; |
| 172 | + |
| 173 | + let compressed_size = compressed.nbytes(); |
| 174 | + let ratio = uncompressed_size as f64 / compressed_size as f64; |
| 175 | + |
| 176 | + println!(" Compressed size: ~{} bytes", compressed_size); |
| 177 | + println!(" Compression ratio: {:.2}x", ratio); |
| 178 | + println!(" Encoding: {}", compressed.encoding().id()); |
| 179 | + println!(" Note: Sparse encoding stores only non-zero indices and values"); |
| 180 | + |
| 181 | + Ok(()) |
| 182 | +} |
| 183 | + |
| 184 | +fn compress_structured_data() -> Result<(), Box<dyn std::error::Error>> { |
| 185 | + // Create a struct array with multiple columns |
| 186 | + let size = 5000; |
| 187 | + |
| 188 | + // ID column (sequential) |
| 189 | + let ids: PrimitiveArray = (1..=size).map(|i| i as u64).collect(); |
| 190 | + |
| 191 | + // Status column (categorical) |
| 192 | + let statuses: Vec<Option<&str>> = (0..size) |
| 193 | + .map(|i| match i % 3 { |
| 194 | + 0 => "active", |
| 195 | + 1 => "pending", |
| 196 | + _ => "completed", |
| 197 | + }) |
| 198 | + .map(Some) |
| 199 | + .collect(); |
| 200 | + let status_array = VarBinArray::from_iter(statuses, DType::Utf8(Nullability::NonNullable)); |
| 201 | + |
| 202 | + // Value column (floats) |
| 203 | + let values: PrimitiveArray = (0..size).map(|i| (i as f64) * 1.5).collect(); |
| 204 | + |
| 205 | + let struct_array = StructArray::try_new( |
| 206 | + ["id", "status", "value"].into(), |
| 207 | + vec![ |
| 208 | + ids.into_array(), |
| 209 | + status_array.into_array(), |
| 210 | + values.into_array(), |
| 211 | + ], |
| 212 | + size, |
| 213 | + Validity::NonNullable, |
| 214 | + )?; |
| 215 | + |
| 216 | + let uncompressed_size = estimate_size(struct_array.as_ref()); |
| 217 | + println!(" Structured data (5,000 records, 3 columns):"); |
| 218 | + println!(" Uncompressed size: ~{} bytes", uncompressed_size); |
| 219 | + |
| 220 | + let compressor = BtrBlocksCompressor::default(); |
| 221 | + let compressed = compressor.compress(struct_array.as_ref())?; |
| 222 | + |
| 223 | + let compressed_size = compressed.nbytes(); |
| 224 | + let ratio = uncompressed_size as f64 / compressed_size as f64; |
| 225 | + |
| 226 | + println!(" Compressed size: ~{} bytes", compressed_size); |
| 227 | + println!(" Compression ratio: {:.2}x", ratio); |
| 228 | + println!(" Encoding: {}", compressed.encoding().id()); |
| 229 | + println!(" Note: Each column can be compressed with its optimal strategy"); |
| 230 | + |
| 231 | + Ok(()) |
| 232 | +} |
| 233 | + |
| 234 | +/// Estimate the size of an array in bytes (approximation) |
| 235 | +#[allow(clippy::cast_possible_truncation)] |
| 236 | +fn estimate_size(array: &dyn Array) -> usize { |
| 237 | + array.nbytes() as usize |
| 238 | +} |
0 commit comments