@@ -8769,9 +8769,9 @@ <h5>Grouping and Aggregation</h5>
8769
8769
Let E := [], a list of pairs of the form (variable, expression)
8770
8770
8771
8771
If Q contains GROUP BY exprlist
8772
- Let G := Group(exprlist, ToList(P))
8772
+ Let Grp := Group(exprlist, ToList(P))
8773
8773
Else If Q contains an aggregate in SELECT, HAVING, ORDER BY
8774
- Let G := Group((1), ToList(P))
8774
+ Let Grp := Group((1), ToList(P))
8775
8775
Else
8776
8776
skip the rest of the aggregate step
8777
8777
End
@@ -8784,14 +8784,14 @@ <h5>Grouping and Aggregation</h5>
8784
8784
End
8785
8785
For each aggregate R(args ; scalarvals) now in X
8786
8786
# note scalarvals may be omitted, then it's equivalent to the empty set
8787
- A<span><sub>i</sub></span> := Aggregation(args, R, scalarvals, G )
8787
+ A<span><sub>i</sub></span> := Aggregation(args, R, scalarvals, Grp )
8788
8788
Replace R(...) with agg<span><sub>i</sub></span> in Q
8789
8789
i := i + 1
8790
8790
End
8791
8791
End
8792
8792
8793
8793
For each variable V appearing outside of an aggregate
8794
- A<span><sub>i</sub></span> := Aggregation(V, Sample, {}, G )
8794
+ A<span><sub>i</sub></span> := Aggregation(V, Sample, {}, Grp )
8795
8795
E := E append (V, agg<span><sub>i</sub></span>)
8796
8796
i := i + 1
8797
8797
End
@@ -9763,8 +9763,8 @@ <h3>Evaluation Semantics</h3>
9763
9763
<div id="defn_evalAggregation">
9764
9764
<b>Definition: Evaluation of Aggregation</b>
9765
9765
</div>
9766
- <p>eval(D(G), Aggregation(exprlist, func, scalarvals, P )) = Aggregation(exprlist, func,
9767
- scalarvals, eval(D(G), P ))</p>
9766
+ <p>eval(D(G), Aggregation(exprlist, func, scalarvals, Grp )) = Aggregation(exprlist, func,
9767
+ scalarvals, eval(D(G), Grp ))</p>
9768
9768
</div>
9769
9769
<div class="defn">
9770
9770
<div id="defn_evalAggregateJoin">
0 commit comments