You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: README.md
+139-2Lines changed: 139 additions & 2 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -14,6 +14,10 @@ Use this SDK to build Watson-powered applications in Unity. It comes with a set
14
14
*[Language Translation](#language-translation)
15
15
*[Dialog](#dialog)
16
16
*[Natural Language Classifier](#natural-language-classifier)
17
+
*[Tone Analyzer](#tone-analyzer)
18
+
*[Tradeoff Analytics](#tradeoff-analytics)
19
+
*[Conversation](#conversation)
20
+
*[Visual Recognition](#visual-recognition)
17
21
*[Developing a basic application in one minute](#developing-a-basic-application-in-one-minute)
18
22
*[Documentation](#documentation)
19
23
*[License](#license)
@@ -210,9 +214,121 @@ You can use the Natural Language Classifier Editor to import and export classifi
210
214
2. In the **Name** field, specify a name for the classifier.
211
215
3. Click **Create**.
212
216
213
-
### Conversation
214
-
<!-- conversation description here: Change link below -->
217
+
### Tone Analyzer
218
+
The [Tone Analyzer][tone_analyzer] service detects emotions, social tendencies and writing style from text input.
215
219
220
+
```
221
+
ToneAnalyzer m_ToneAnalyzer = new ToneAnalyzer();
222
+
string m_StringToTestTone = "This service enables people to discover and understand, and revise the impact of tone in their content. It uses linguistic analysis to detect and interpret emotional, social, and language cues found in text.";
The [Tradeoff Analytics][tradeoff_analytics] service helps people make better decisions when faced with multiple, sometimes conflicting, goals and alternatives.
236
+
237
+
```
238
+
void Start () {
239
+
Problem problemToSolve = new Problem();
240
+
problemToSolve.subject = "Test Subject";
241
+
242
+
List<Column> listColumn = new List<Column>();
243
+
Column columnPrice = new Column();
244
+
columnPrice.description = "Price Column to minimize";
245
+
columnPrice.range = new ValueRange();
246
+
((ValueRange)columnPrice.range).high = 600;
247
+
((ValueRange)columnPrice.range).low = 0;
248
+
columnPrice.type = "numeric";
249
+
columnPrice.key = "price";
250
+
columnPrice.full_name = "Price";
251
+
columnPrice.goal = "min";
252
+
columnPrice.is_objective = true;
253
+
columnPrice.format = "$####0.00";
254
+
255
+
Column columnWeight = new Column();
256
+
columnWeight.description = "Weight Column to minimize";
257
+
columnWeight.type = "numeric";
258
+
columnWeight.key = "weight";
259
+
columnWeight.full_name = "Weight";
260
+
columnWeight.goal = "min";
261
+
columnWeight.is_objective = true;
262
+
columnWeight.format = "####0 g";
263
+
264
+
Column columnBrandName = new Column();
265
+
columnBrandName.description = "All Brand Names";
266
+
columnBrandName.type = "categorical";
267
+
columnBrandName.key = "brand";
268
+
columnBrandName.full_name = "Brand";
269
+
columnBrandName.goal = "max";
270
+
columnBrandName.is_objective = true;
271
+
columnBrandName.preference = new string[]{"Samsung", "Apple", "HTC"};
272
+
columnBrandName.range = new CategoricalRange();
273
+
((CategoricalRange)columnBrandName.range).keys = new string[]{"Samsung", "Apple", "HTC"};
274
+
275
+
listColumn.Add(columnPrice);
276
+
listColumn.Add(columnWeight);
277
+
278
+
problemToSolve.columns = listColumn.ToArray();
279
+
280
+
281
+
List<Option> listOption = new List<Option>();
282
+
283
+
Option option1 = new Option();
284
+
option1.key = "1";
285
+
option1.name = "Samsung Galaxy S4";
286
+
option1.values = new TestDataValue();
287
+
(option1.values as TestDataValue).weight = 130;
288
+
(option1.values as TestDataValue).brand = "Samsung";
289
+
(option1.values as TestDataValue).price = 249;
290
+
listOption.Add(option1);
291
+
292
+
Option option2 = new Option();
293
+
option2.key = "2";
294
+
option2.name = "Apple iPhone 5";
295
+
option2.values = new TestDataValue();
296
+
(option2.values as TestDataValue).weight = 112;
297
+
(option2.values as TestDataValue).brand = "Apple";
The [Visual Recognition][visual_recognition] service uses deep learning algorithms to analyze images for scenes, objects, faces, text and other content and returns keywords about that content. You can also train custom classifiers to classify images.
353
+
354
+
##### Classifying an image
355
+
```
356
+
```
357
+
358
+
##### Creating new classifiers
359
+
```
360
+
```
361
+
362
+
##### Detecting faces
363
+
```
364
+
```
365
+
366
+
##### Recognizing text
233
367
```
368
+
```-->
234
369
235
370
## Developing a basic application in one minute
236
371
You can quickly develop a basic application that uses the Speech to Text service and the Natural Language Classifier service by using the prefabs that come with the SDK. Ensure that you prepare the test data before you complete the the following steps:
@@ -280,3 +415,5 @@ See [CONTRIBUTING.md](.github/CONTRIBUTING.md).
0 commit comments