|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "This example shows you the basic usage of the windpowerlib. There are mainly three steps.\n", |
| 8 | + "First you need to define your wind turbine, then get your weather data and in the last step call the windpowerlib ModelChain to generate your feedin timeseries.\n", |
| 9 | + "Be careful with the units!" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "### Import necessary packages and modules" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "metadata": { |
| 23 | + "collapsed": true |
| 24 | + }, |
| 25 | + "outputs": [], |
| 26 | + "source": [ |
| 27 | + "__copyright__ = \"Copyright oemof developer group\"\n", |
| 28 | + "__license__ = \"GPLv3\"\n", |
| 29 | + "\n", |
| 30 | + "import os\n", |
| 31 | + "import pandas as pd\n", |
| 32 | + "\n", |
| 33 | + "from windpowerlib import modelchain\n", |
| 34 | + "from windpowerlib import wind_turbine as wt" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "markdown", |
| 39 | + "metadata": {}, |
| 40 | + "source": [ |
| 41 | + "You can use the logging package to get logging messages from the windpowerlib. Change the logging level if you want more or less messages." |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": null, |
| 47 | + "metadata": { |
| 48 | + "collapsed": true |
| 49 | + }, |
| 50 | + "outputs": [], |
| 51 | + "source": [ |
| 52 | + "import logging\n", |
| 53 | + "logging.getLogger().setLevel(logging.DEBUG)" |
| 54 | + ] |
| 55 | + }, |
| 56 | + { |
| 57 | + "cell_type": "markdown", |
| 58 | + "metadata": {}, |
| 59 | + "source": [ |
| 60 | + "### Import weather data\n", |
| 61 | + "\n", |
| 62 | + "The function below imports the example weather data from the weather.csv file provided along with the windpowerlib. The data include wind speed at two different heights in m/s, air temperature in two different heights in K, surface roughness length in m and air pressure in Pa.\n", |
| 63 | + "\n", |
| 64 | + "To find out which weather data in which units need to be provided in order to use the ModelChain or other functions of the windpowerlib see the individual function documentation." |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "code", |
| 69 | + "execution_count": null, |
| 70 | + "metadata": { |
| 71 | + "collapsed": true |
| 72 | + }, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "def read_weather_data(filename, datetime_column='Unnamed: 0',\n", |
| 76 | + " **kwargs):\n", |
| 77 | + " r\"\"\"\n", |
| 78 | + " Fetches weather data from a file.\n", |
| 79 | + "\n", |
| 80 | + " The files are located in the example folder of the windpowerlib.\n", |
| 81 | + "\n", |
| 82 | + " Parameters\n", |
| 83 | + " ----------\n", |
| 84 | + " filename : string\n", |
| 85 | + " Filename of the weather data file.\n", |
| 86 | + " datetime_column : string\n", |
| 87 | + " Name of the datetime column of the weather DataFrame.\n", |
| 88 | + "\n", |
| 89 | + " Other Parameters\n", |
| 90 | + " ----------------\n", |
| 91 | + " datapath : string, optional\n", |
| 92 | + " Path where the weather data file is stored.\n", |
| 93 | + " Default: 'windpowerlib/example'.\n", |
| 94 | + "\n", |
| 95 | + " Returns\n", |
| 96 | + " -------\n", |
| 97 | + " pandas.DataFrame\n", |
| 98 | + " Contains weather data time series.\n", |
| 99 | + "\n", |
| 100 | + " \"\"\"\n", |
| 101 | + " if 'datapath' not in kwargs:\n", |
| 102 | + " kwargs['datapath'] = os.path.join(os.path.split(\n", |
| 103 | + " os.path.dirname(__file__))[0], 'example')\n", |
| 104 | + "\n", |
| 105 | + " file = os.path.join(kwargs['datapath'], filename)\n", |
| 106 | + " df = pd.read_csv(file)\n", |
| 107 | + " return df.set_index(pd.to_datetime(df[datetime_column])).tz_localize(\n", |
| 108 | + " 'UTC').tz_convert('Europe/Berlin').drop(datetime_column, 1)\n", |
| 109 | + "\n", |
| 110 | + "\n", |
| 111 | + "# Read weather data from csv\n", |
| 112 | + "weather = read_weather_data('weather.csv')" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "markdown", |
| 117 | + "metadata": {}, |
| 118 | + "source": [ |
| 119 | + "Along with the weather data you have to provide a dataframe or dictionary specifying the height for which the data applies." |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "metadata": { |
| 126 | + "collapsed": true |
| 127 | + }, |
| 128 | + "outputs": [], |
| 129 | + "source": [ |
| 130 | + "data_height = {\n", |
| 131 | + " 'pressure': 0,\n", |
| 132 | + " 'temp_air': 2,\n", |
| 133 | + " 'v_wind': 10,\n", |
| 134 | + " 'temp_air_2': 10,\n", |
| 135 | + " 'v_wind_2': 80}" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "### Initialise wind turbine" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "markdown", |
| 147 | + "metadata": {}, |
| 148 | + "source": [ |
| 149 | + "There are two ways to initialize a WindTurbine object. You can either specify your own turbine, as done below or use" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": null, |
| 155 | + "metadata": { |
| 156 | + "collapsed": true |
| 157 | + }, |
| 158 | + "outputs": [], |
| 159 | + "source": [ |
| 160 | + "wt.get_turbine_types()\n", |
| 161 | + "turbines[turbines[\"turbine_id\"].str.contains(\"VESTAS\")]" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "metadata": { |
| 168 | + "collapsed": true |
| 169 | + }, |
| 170 | + "outputs": [], |
| 171 | + "source": [ |
| 172 | + "# Specifications of the wind turbines\n", |
| 173 | + "enerconE126 = {\n", |
| 174 | + " 'hub_height': 135,\n", |
| 175 | + " 'd_rotor': 127,\n", |
| 176 | + " 'fetch_curve': 'P', # 'P' vor p-curve and 'cp' for cp-curve\n", |
| 177 | + " 'turbine_name': 'ENERCON E 126 7500'} # Turbine name as in register. Use\n", |
| 178 | + " # wind_turbine.get_turbine_types()\n", |
| 179 | + "P_data = {0:\n", |
| 180 | + " 3:\n", |
| 181 | + " 5:\n", |
| 182 | + " 10:\n", |
| 183 | + " 15:\n", |
| 184 | + " 20:\n", |
| 185 | + " 25:}\n", |
| 186 | + "# for a full list.\n", |
| 187 | + "vestasV90 = {\n", |
| 188 | + " 'hub_height': 105,\n", |
| 189 | + " 'd_rotor': 90,\n", |
| 190 | + " 'fetch_curve': 'P',\n", |
| 191 | + " 'turbine_name': 'VESTAS V 90 3000'}\n", |
| 192 | + "\n", |
| 193 | + "# Initialize WindTurbine objects\n", |
| 194 | + "e126 = wt.WindTurbine(**enerconE126)\n", |
| 195 | + "v90 = wt.WindTurbine(**vestasV90)" |
| 196 | + ] |
| 197 | + }, |
| 198 | + { |
| 199 | + "cell_type": "markdown", |
| 200 | + "metadata": {}, |
| 201 | + "source": [ |
| 202 | + "### Use the ModelChain to generate feedin timeseries" |
| 203 | + ] |
| 204 | + }, |
| 205 | + { |
| 206 | + "cell_type": "code", |
| 207 | + "execution_count": null, |
| 208 | + "metadata": { |
| 209 | + "collapsed": true |
| 210 | + }, |
| 211 | + "outputs": [], |
| 212 | + "source": [ |
| 213 | + "# Specifications of the modelchain data\n", |
| 214 | + "modelchain_data = {\n", |
| 215 | + " 'obstacle_height': 0,\n", |
| 216 | + " 'wind_model': 'logarithmic', # 'logarithmic' or 'hellman'\n", |
| 217 | + " 'rho_model': 'ideal_gas', # 'barometric' or 'ideal_gas'\n", |
| 218 | + " 'power_output_model': 'p_values', # 'p_values' or 'cp_values'\n", |
| 219 | + " 'density_corr': False, # True or False\n", |
| 220 | + " 'hellman_exp': None} # Float or None\n", |
| 221 | + "\n", |
| 222 | + "# Calculate turbine power output\n", |
| 223 | + "mc_e126 = modelchain.ModelChain(e126, **modelchain_data).run_model(\n", |
| 224 | + " weather, coastDat2)\n", |
| 225 | + "e126.power_output = mc_e126.power_output\n", |
| 226 | + "mc_v90 = modelchain.ModelChain(v90, **modelchain_data).run_model(\n", |
| 227 | + " weather, coastDat2)\n", |
| 228 | + "v90.power_output = mc_v90.power_output\n", |
| 229 | + "\n", |
| 230 | + "\n" |
| 231 | + ] |
| 232 | + }, |
| 233 | + { |
| 234 | + "cell_type": "markdown", |
| 235 | + "metadata": {}, |
| 236 | + "source": [ |
| 237 | + "### Plot results" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": null, |
| 243 | + "metadata": { |
| 244 | + "collapsed": true |
| 245 | + }, |
| 246 | + "outputs": [], |
| 247 | + "source": [ |
| 248 | + "try:\n", |
| 249 | + " from matplotlib import pyplot as plt\n", |
| 250 | + "except ImportError:\n", |
| 251 | + " plt = None\n", |
| 252 | + "# Plot turbine power output\n", |
| 253 | + "if plt:\n", |
| 254 | + " e126.power_output.plot(legend=True, label='Enercon E126')\n", |
| 255 | + " v90.power_output.plot(legend=True, label='Vestas V90')\n", |
| 256 | + " plt.show()\n", |
| 257 | + "else:\n", |
| 258 | + " print(e126.power_output)\n", |
| 259 | + " print(v90.power_output)\n", |
| 260 | + "\n", |
| 261 | + "# Plot power (coefficient) curves\n", |
| 262 | + "if plt:\n", |
| 263 | + " if e126.cp_values is not None:\n", |
| 264 | + " e126.cp_values.plot(style='*', title='Enercon E126')\n", |
| 265 | + " plt.show()\n", |
| 266 | + " if e126.p_values is not None:\n", |
| 267 | + " e126.p_values.plot(style='*', title='Enercon E126')\n", |
| 268 | + " plt.show()\n", |
| 269 | + " if v90.cp_values is not None:\n", |
| 270 | + " v90.cp_values.plot(style='*', title='Vestas V90')\n", |
| 271 | + " plt.show()\n", |
| 272 | + " if v90.p_values is not None:\n", |
| 273 | + " v90.p_values.plot(style='*', title='Vestas V90')\n", |
| 274 | + " plt.show()\n", |
| 275 | + "else:\n", |
| 276 | + " if e126.cp_values is not None:\n", |
| 277 | + " print(\"The cp value at a wind speed of 5 m/s: {0}\".format(\n", |
| 278 | + " e126.cp_values.cp[5.0]))\n", |
| 279 | + " if e126.p_values is not None:\n", |
| 280 | + " print(\"The P value at a wind speed of 5 m/s: {0}\".format(\n", |
| 281 | + " e126.p_values.P[5.0]))\n", |
| 282 | + "logging.info('Done!')" |
| 283 | + ] |
| 284 | + } |
| 285 | + ], |
| 286 | + "metadata": { |
| 287 | + "kernelspec": { |
| 288 | + "display_name": "Python 3", |
| 289 | + "language": "python", |
| 290 | + "name": "python3" |
| 291 | + }, |
| 292 | + "language_info": { |
| 293 | + "codemirror_mode": { |
| 294 | + "name": "ipython", |
| 295 | + "version": 3 |
| 296 | + }, |
| 297 | + "file_extension": ".py", |
| 298 | + "mimetype": "text/x-python", |
| 299 | + "name": "python", |
| 300 | + "nbconvert_exporter": "python", |
| 301 | + "pygments_lexer": "ipython3", |
| 302 | + "version": "3.4.2" |
| 303 | + } |
| 304 | + }, |
| 305 | + "nbformat": 4, |
| 306 | + "nbformat_minor": 2 |
| 307 | +} |
0 commit comments