@@ -169,12 +169,16 @@ def read_wind_efficiency_curve(curve_name='dena_mean', plot=False):
169169 """
170170 path = os .path .join (os .path .dirname (__file__ ), 'data' ,
171171 'wind_efficiency_curves.csv' )
172+ # Read all curves from file
172173 wind_efficiency_curves = pd .read_csv (path )
174+ # Create wind speed series with standard wind speeds in 0.5 m/s step size
173175 wind_speed = pd .Series (np .arange (0 , 25.5 , 0.5 ))
176+ # Get x values depending on curve name
174177 if 'dena' in curve_name :
175178 x_values = wind_efficiency_curves ['x_dena' ]
176179 if 'knorr' in curve_name :
177180 x_values = wind_efficiency_curves ['x_knorr' ]
181+ # Interpolate between the x values and create data frame
178182 efficiency = np .interp (
179183 wind_speed , x_values .dropna (),
180184 wind_efficiency_curves [curve_name ].dropna ())
@@ -216,16 +220,21 @@ def display_wind_efficiency_curves():
216220 """
217221 path = os .path .join (os .path .dirname (__file__ ), 'data' ,
218222 'wind_efficiency_curves.csv' )
223+ # Read all curves from file
219224 wind_efficiency_curves = pd .read_csv (path )
225+ # Initialize data frame for plot
220226 curves_df = pd .DataFrame ()
221227 for curve_name in [col for col in list (wind_efficiency_curves ) if
222228 'x_' not in col ]:
229+ # Get wind efficiency curve for standard wind speeds from
230+ # read_wind_efficiency_curve() and add to data frame
223231 efficiency_curve = read_wind_efficiency_curve (
224232 curve_name ).rename (
225233 columns = {'efficiency' : curve_name .replace ('_' , ' ' ),
226234 'wind_speed' : 'wind speed m/s' }).set_index (
227235 'wind speed m/s' )
228236 curves_df = pd .concat ([curves_df , efficiency_curve ], axis = 1 )
237+ # Create separate data frames for origin of curve
229238 knorr_df = curves_df [[column_name for column_name in curves_df if
230239 'knorr' in column_name ]]
231240 dena_df = curves_df [[column_name for column_name in curves_df if
0 commit comments