@@ -108,11 +108,15 @@ def fetch_turbine_data(self):
108108
109109 Method fetches nominal power as well as power coefficient curve or
110110 power curve from a data file provided along with the windpowerlib.
111+ You can also use this function to import your own power (coefficient)
112+ curves. Therefore the wind speeds in m/s have to be in the first row
113+ and the corresponding power coefficient curve values or power
114+ curve values in W in a row where the first column contains the turbine
115+ name (See directory windpowerlib/data as reference).
111116
112117 Returns
113118 -------
114- float
115- Nominal power of the requested wind turbine.
119+ self
116120
117121 Examples
118122 --------
@@ -139,19 +143,21 @@ def restructure_data():
139143 Returns
140144 -------
141145 Tuple (pd.DataFrame, float)
142- Power curve or power coefficient curve (pd.DataFrame)
143- and nominal power ( float) .
146+ Power curve (values in W) or power coefficient curve as
147+ pd.DataFrame and nominal power as float in W .
144148
145149 """
146150 df = read_turbine_data (filename = filename )
147151 wpp_df = df [df .turbine_id == self .turbine_name ]
152+ # if turbine not in data file
148153 if wpp_df .shape [0 ] == 0 :
149154 pd .set_option ('display.max_rows' , len (df ))
150155 logging .info ('Possible types: \n {0}' .format (df .turbine_id ))
151156 pd .reset_option ('display.max_rows' )
152157 sys .exit ('Cannot find the wind converter type: {0}' .format (
153158 self .turbine_name ))
154-
159+ # if turbine in data file write power (coefficient) curve values
160+ # to 'data' array
155161 ncols = ['turbine_id' , 'p_nom' , 'source' , 'modificationtimestamp' ]
156162 data = np .array ([0 , 0 ])
157163 for col in wpp_df .keys ():
@@ -163,12 +169,12 @@ def restructure_data():
163169 data = np .delete (data , 0 , 0 )
164170 df = pd .DataFrame (data , columns = ['v_wind' , self .fetch_curve ])
165171 df .set_index ('v_wind' , drop = True , inplace = True )
166- nominal_power = wpp_df ['p_nom' ].iloc [0 ]
172+ nominal_power = wpp_df ['p_nom' ].iloc [0 ] * 1000.0
167173 return df , nominal_power
168174 if self .fetch_curve == 'p' :
169175 filename = 'p_curves.csv'
170176 p_values , p_nom = restructure_data ()
171- self .p_values = p_values
177+ self .p_values = p_values * 1000.0
172178 else :
173179 filename = 'cp_curves.csv'
174180 self .cp_values , p_nom = restructure_data ()
0 commit comments