@@ -20,50 +20,50 @@ class WindFarm(object):
2020
2121 Parameters
2222 ----------
23- name : string
23+ name : str or None
2424 Name of the wind farm.
25- wind_turbine_fleet : list of dictionaries
25+ wind_turbine_fleet : list(dict)
2626 Wind turbines of wind farm. Dictionaries must have 'wind_turbine'
2727 (contains a :class:`~.wind_turbine.WindTurbine` object) and
2828 'number_of_turbines' (number of wind turbines of the same turbine type
2929 in the wind farm) as keys.
30- coordinates : list or None
31- List of coordinates [lat, lon] of location for loading data.
32- Default: None.
33- efficiency : float or pd.DataFrame
34- Efficiency of the wind farm. Either constant (float) power efficiency
35- curve (pd.DataFrame) containing 'wind_speed' and 'efficiency'
36- columns/keys with wind speeds in m/s and the corresponding
30+ coordinates : list(float) or None (optional)
31+ List with coordinates [lat, lon] of location. Default: None.
32+ efficiency : float or :pandas:`pandas.DataFrame<frame>` or None (optional)
33+ Efficiency of the wind farm. Provide as either constant (float) or
34+ power efficiency curve (pd.DataFrame) containing 'wind_speed' and
35+ 'efficiency' columns with wind speeds in m/s and the corresponding
3736 dimensionless wind farm efficiency. Default: None.
3837
3938 Attributes
4039 ----------
41- name : string
40+ name : str or None
4241 Name of the wind farm.
43- wind_turbine_fleet : list of dictionaries
42+ wind_turbine_fleet : list(dict)
4443 Wind turbines of wind farm. Dictionaries must have 'wind_turbine'
4544 (contains a :class:`~.wind_turbine.WindTurbine` object) and
4645 'number_of_turbines' (number of wind turbines of the same turbine type
4746 in the wind farm) as keys.
48- coordinates : list or None
49- List of coordinates [lat, lon] of location for loading data.
50- Default: None.
51- efficiency : float or pd.DataFrame
47+ coordinates : list(float) or None
48+ List with coordinates [lat, lon] of location. Default: None.
49+ efficiency : float or :pandas:`pandas.DataFrame<frame>` or None
5250 Efficiency of the wind farm. Either constant (float) power efficiency
5351 curve (pd.DataFrame) containing 'wind_speed' and 'efficiency'
54- columns/keys with wind speeds in m/s and the corresponding
52+ columns with wind speeds in m/s and the corresponding
5553 dimensionless wind farm efficiency. Default: None.
5654 hub_height : float
57- The calculated mean hub height of the wind farm.
58- power_curve : pandas.DataFrame or None
59- The calculated power curve of the wind farm.
60- power_output : pandas.Series
55+ The calculated mean hub height of the wind farm. See
56+ :py:func:`mean_hub_height` for more information.
6157 nominal_power : float
6258 The nominal power is the sum of the nominal power of all turbines in
6359 the wind farm in W.
6460 installed_power : float
6561 Installed nominal power of the wind farm in W. Deprecated! Use
6662 :attr:`~.wind_farm.WindFarm.nominal_power` instead.
63+ power_curve : :pandas:`pandas.DataFrame<frame>` or None
64+ The calculated power curve of the wind farm. See
65+ :py:func:`assign_power_curve` for more information.
66+ power_output : :pandas:`pandas.Series<series>`
6767 The calculated power output of the wind farm.
6868
6969 Examples
@@ -86,6 +86,7 @@ class WindFarm(object):
8686 25200000.0
8787
8888 """
89+
8990 def __init__ (self , name , wind_turbine_fleet , coordinates = None ,
9091 efficiency = None , ** kwargs ):
9192
@@ -148,12 +149,14 @@ def mean_hub_height(self):
148149 The mean hub height of a wind farm is necessary for power output
149150 calculations with an aggregated wind farm power curve containing wind
150151 turbines with different hub heights. Hub heights of wind turbines with
151- higher nominal power weigh more than others. Assigns the hub height to
152- the wind farm object.
152+ higher nominal power weigh more than others.
153+ After the calculations the mean hub height is assigned to the attribute
154+ :py:attr:`~hub_height`.
153155
154156 Returns
155157 -------
156- self
158+ :class:`~.wind_farm.WindFarm`
159+ self
157160
158161 Notes
159162 -----
@@ -211,27 +214,28 @@ def assign_power_curve(self, wake_losses_model='power_efficiency_curve',
211214 of all wind turbines in the wind farm. Depending on the parameters the
212215 power curves are smoothed (before or after the aggregation) and/or a
213216 wind farm efficiency (power efficiency curve or constant efficiency) is
214- applied after the aggregation. After the calculations the power curve
215- is assigned to the wind farm object.
217+ applied after the aggregation.
218+ After the calculations the power curve is assigned to the attribute
219+ :py:attr:`~power_curve`.
216220
217221 Parameters
218222 ----------
219- wake_losses_model : string
223+ wake_losses_model : str
220224 Defines the method for taking wake losses within the farm into
221225 consideration. Options: 'power_efficiency_curve',
222226 'constant_efficiency' or None. Default: 'power_efficiency_curve'.
223- smoothing : boolean
227+ smoothing : bool
224228 If True the power curves will be smoothed before or after the
225229 aggregation of power curves depending on `smoothing_order`.
226230 Default: False.
227231 block_width : float
228232 Width between the wind speeds in the sum of the equation in
229233 :py:func:`~.power_curves.smooth_power_curve`. Default: 0.5.
230- standard_deviation_method : string
234+ standard_deviation_method : str
231235 Method for calculating the standard deviation for the Gauss
232236 distribution. Options: 'turbulence_intensity',
233237 'Staffell_Pfenninger'. Default: 'turbulence_intensity'.
234- smoothing_order : string
238+ smoothing_order : str
235239 Defines when the smoothing takes place if `smoothing` is True.
236240 Options: 'turbine_power_curves' (to the single turbine power
237241 curves), 'wind_farm_power_curves'.
@@ -240,17 +244,15 @@ def assign_power_curve(self, wake_losses_model='power_efficiency_curve',
240244 Turbulence intensity at hub height of the wind farm for power curve
241245 smoothing with 'turbulence_intensity' method. Can be calculated
242246 from `roughness_length` instead. Default: None.
243-
244- Other Parameters
245- ----------------
246- roughness_length : float, optional.
247+ roughness_length : float (optional)
247248 Roughness length. If `standard_deviation_method` is
248249 'turbulence_intensity' and `turbulence_intensity` is not given
249250 the turbulence intensity is calculated via the roughness length.
250251
251252 Returns
252253 -------
253- self
254+ :class:`~.wind_farm.WindFarm`
255+ self
254256
255257 """
256258 # Check if all wind turbines have a power curve as attribute
@@ -301,8 +303,8 @@ def assign_power_curve(self, wake_losses_model='power_efficiency_curve',
301303 standard_deviation_method = standard_deviation_method ,
302304 block_width = block_width , ** kwargs )
303305 else :
304- # Add value zero to start and end of curve as otherwise there
305- # can occure problems during the aggregation
306+ # Add value zero to start and end of curve as otherwise
307+ # problems can occur during the aggregation
306308 if power_curve .iloc [0 ]['wind_speed' ] != 0.0 :
307309 power_curve = pd .concat (
308310 [pd .DataFrame (data = {
@@ -325,7 +327,8 @@ def assign_power_curve(self, wake_losses_model='power_efficiency_curve',
325327 df .interpolate (method = 'index' ).sum (axis = 1 ))
326328 wind_farm_power_curve .columns = ['value' ]
327329 wind_farm_power_curve .reset_index ('wind_speed' , inplace = True )
328- # Editions to the power curve after the summation
330+ # Apply power curve smoothing and consideration of wake losses
331+ # after the summation
329332 if smoothing and smoothing_order == 'wind_farm_power_curves' :
330333 wind_farm_power_curve = power_curves .smooth_power_curve (
331334 wind_farm_power_curve ['wind_speed' ],
0 commit comments