|
165 | 165 | "wt.get_turbine_types()\n", |
166 | 166 | "\n", |
167 | 167 | "# get power coefficient curves\n", |
168 | | - "# write names of wind turbines for which power coefficient curves are provided to 'turbines' DataFrame\n", |
| 168 | + "# write names of wind turbines for which power coefficient curves are provided\n", |
| 169 | + "# to 'turbines' DataFrame\n", |
169 | 170 | "turbines = wt.get_turbine_types(filename='cp_curves.csv', print_out=False)\n", |
170 | 171 | "# find all Vestas in 'turbines' DataFrame\n", |
171 | 172 | "print(turbines[turbines[\"turbine_id\"].str.contains(\"ENERCON\")])" |
|
179 | 180 | }, |
180 | 181 | "outputs": [], |
181 | 182 | "source": [ |
182 | | - "# specification of own wind turbine (Note: power coefficient values and nominal power have to be in Watt)\n", |
| 183 | + "# specification of own wind turbine (Note: power coefficient values and\n", |
| 184 | + "# nominal power have to be in Watt)\n", |
183 | 185 | "myTurbine = {\n", |
184 | 186 | " 'turbine_name': 'myTurbine',\n", |
185 | 187 | " 'nominal_power': 3e6, # in W\n", |
186 | 188 | " 'hub_height': 105, # in m\n", |
187 | 189 | " 'd_rotor': 90, # in m\n", |
188 | 190 | " 'p_values': pd.DataFrame(\n", |
189 | | - " data={'p': [p * 1000 for p in [0.0, 26.0, 180.0, 1500.0, 3000.0, 3000.0]]}, # in W\n", |
| 191 | + " data={'p': [p * 1000 for p in\n", |
| 192 | + " [0.0, 26.0, 180.0, 1500.0, 3000.0, 3000.0]]}, # in W\n", |
190 | 193 | " index=[0.0, 3.0, 5.0, 10.0, 15.0, 25.0]) # in m/s\n", |
191 | 194 | " } \n", |
192 | 195 | "# initialise WindTurbine object\n", |
|
202 | 205 | "outputs": [], |
203 | 206 | "source": [ |
204 | 207 | "# specification of wind turbine where power curve is provided\n", |
205 | | - "# if you want to use the power coefficient curve add {'fetch_curve': 'cp'} to the dictionary\n", |
| 208 | + "# if you want to use the power coefficient curve add {'fetch_curve': 'cp'}\n", |
| 209 | + "# to the dictionary\n", |
206 | 210 | "enerconE126 = {\n", |
207 | 211 | " 'turbine_name': 'ENERCON E 126 7500', # turbine name as in register\n", |
208 | 212 | " 'hub_height': 135, # in m\n", |
|
228 | 232 | "outputs": [], |
229 | 233 | "source": [ |
230 | 234 | "# power output calculation for my_turbine\n", |
231 | | - "# initialise ModelChain with default parameters and use run_model method to calculate power output\n", |
| 235 | + "# initialise ModelChain with default parameters and use run_model\n", |
| 236 | + "# method to calculate power output\n", |
232 | 237 | "mc_my_turbine = modelchain.ModelChain(my_turbine).run_model(\n", |
233 | 238 | " weather, data_height)\n", |
234 | 239 | "# write power output timeseries to WindTurbine object\n", |
|
250 | 255 | " 'power_output_model': 'p_values', # 'p_values' (default) or 'cp_values'\n", |
251 | 256 | " 'density_corr': True, # False (default) or True\n", |
252 | 257 | " 'hellman_exp': None} # None (default) or None\n", |
253 | | - "# initialise ModelChain with own specifications and use run_model method to calculate power output\n", |
| 258 | + "# initialise ModelChain with own specifications and use run_model method to\n", |
| 259 | + "# calculate power output\n", |
254 | 260 | "mc_e126 = modelchain.ModelChain(e126, **modelchain_data).run_model(\n", |
255 | 261 | " weather, data_height)\n", |
256 | 262 | "# write power output timeseries to WindTurbine object\n", |
|
0 commit comments